AD-R121 894 DESIGN- AND IMPLEMENTATION OF A-PERSONAL DATABASE 1/2
MANAGEMENT SYSTEM(U) NAYAL POSTGRADUATE SCHOOL MONTEREY
CR P L JONES JUN 82

UNCLASSIFIED . F/G 9/2. NL

p——— [—

g:

53

<t mM

-— m”
= mw
L
N g 3

S —— mu

- Ca Tt u L gl ¢ X

TTY

Y BTN
Lt A]

ADA121894

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

THESIS

w n
DESIGN AND IMPLEMENTATION
OF A
PERSONAL DATABASE MANAGEMENT SYSTEM
by
Peter L. Jones
June 1982

Thesis Advisor: Dushan Z. Badal
Approved for public release; distribution unlimited. ‘ ,;'LLS‘

RS TS A R N T e T e e U e e e T e e T e T T N T AT LR TN R e —— —— —]

—r

»

i
F‘,‘. SECUMTY CLASSIFICATION OF THIS PAGE (When Date Entered)
8 » READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE SEFORE COMPLETING FORM
T RUPSRY nukeUR 2. GOVT ACCESSION NG]). RECIPIENT 'S CATALOG numMeER]
9 b

; D.A4j {
:’ 4. TITLE (and Subtitte) . TYBE OF REPOAT & PEAIOD COVERED

. ' .
- Design and Implementation of a Personal Database gﬁ:z:erlssghes.l.s
b: L
& Management System 6. PERFOAMING ORG. REPORT NUNBER
€
E T 1 177 T, CONTRACY OR GRANT NUWMBER(S) —
! Peter L. Jones
.
- e PERPORMING ORGANIZATION NAME ANO AODRESS L2 SRogRAw | ‘-r—___‘n"c:."v‘.‘:.':.°.‘.‘f.'~ Tasw
Naval Postgraduate School
Monterey, California 93940
3 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPOAT DATE
June, 1982

Naval Postgraduate School d
Monterey, California 93940 '1"16“““ oF maces

5 oS YoWn e sdUnCy naRT AOORESHI! Gitforant fram Cenwelling Offiee) | '8. SECURITY CLASS. (eof this rapert)

Ol R

3
;: [Tie. DECLASSIPICATION OnGRADING]
ScneduLE /DOWNGRADING

4 . RIBUTION STAT NY (ol thie Repert)
Approved for public release; distribution unlimited.

17. OISTRIBUTION STATEMENT rof the sbatrest entered in Bloek 30, I dilterent vem Repers)

b ——————
15. SUPRLEMENTARY NOTES

19. KLY WORDS (Continue en reverse oide il noccsoary and IGontily by bloesk mumber)
Microcomputer, Hand-held computer, Database Management System, Non-volatile
Memory, FORTH.

:

T YT orv e

70, ABSTRACT (Continue en roverse side Il necccomry and IGontily by biesk sumber)

} The Personal Database Management System is a hardware and software system
designed to support people's memory and recall processes. It is a small,
low power, and inexpensive microcomputer system which employs EEPROM and
CMOS technology. The design is based upon how people manage their personal
information, which was found to be different from the ways conventional
computerized systems manage information..——

I —

" DO , 3%, 1473 coimiow or 1 wov 68 13 OBsOLETE

' $/N 0102-014° 4001, | veeumTY SC RSP ICATION OF Tiid PAGT (ven Dote Brrered)

e

e e w e w v

F!ﬂm N P ST S 0 0 T S M SN S et b e e e ou et s e s v

AR

Approved for public release; distribution unlimited.

Design and glp&elontation
Personal Databa se Nanageaent Systea

by

Peter l. Jones .
Cagtain, United States Marine Corgs
ee University of Washington, 1975

baitt t £ t th .
Subal a1 taaE s 1ad, THEE AL ans of the P

MASTER OF SCIERCE IN COMPUTER SCIENCE

D 4500 LVhad 8 PL IV PLeY,

from the

vy
telitet tt

NAVAL POSTGRAD UéT SCHOOL

g | Jaune 19

INSPrSTED

g Aut hor:

Approved by:

/ / Thesis Advisor
/ // Second Reader

Chairman, of Computer Science

122: /Q?~él)o¢1ﬁZaf

Dean o9f Information and Policy Sciences

\

...............

...

ABSTRACT

The Personal Database Nanagement System is a hardware
and softwvare system designed to support people's memory and
recall processes. It is a small, low power, and inexpensive
microcomputer system which employs E2PROM and CMOS tech-
nology. The design is based upon how people manage their
personal information, which was found ¢to be different from
the vays conventional computerized systeas manage
inforsation.

W2 beasav s

TABLE OF CONTENTS

I. IHRODUCTION - - L J * L] * * L J L] L * . L] L - [J L] * -* 1 1

I1I. PERSONAL DATABASE CHARACTERISTICS .« ¢ « o o « « « 14
A. BACKGROUND ¢ ¢ « ¢ ¢« o o« « o o o o ¢« o o o« o « 14

B. GENERAL CHARACTERISTICS =« ¢ ¢ o o« o o o o o o« 17

1. PileS ¢ ¢ ¢ ¢ ¢ ¢ ¢« o o o « ¢ ¢ s o o o « 19

2. BRECOTASE .« ¢ ¢ o o ¢ o o o o o o o o« o o« « 19

3. Pields ¢ ¢« ¢« o o o ¢ o o o @ ¢ s e o o o o 21

C. DESIGN IMPLICATIONS . o « « ¢ @« o ¢ o o ¢ o o 21

: IIX. HIGH LEVEL PDBMS SYSTEM DESCRIPTION . « ¢« « « « o« 20
8 A. SOPTHABE « « < « o « o o o o o o« o o o s o o o 20
- 1. The Calculator Punction . « ¢« « ¢ « o « « 28
: 2. The Database Management Punction . . « « « 25
B. DATA STRUCTUBES o = « o o o o « o o o o o o « 26
1. Dictionaries « « « ¢ « ¢ ¢ « ¢ ¢ ¢ a«a ¢ o « 26
2 Piles . o ¢ o ¢ e e e ¢ ¢ o o a6 o o o o 27
3. Logical RecOoTdS . o« o ¢ o o o o ¢ o o o o 27
B, Pi@lAS ¢ « ¢ ¢ o« © @« « o o « o« o o« o o o o 28
Se K@YS o ¢ ¢« ¢ © o o o s o o ¢« ¢ ¢ ¢« o o o o 28
C. HARDWABRE ¢ ¢ ¢ ¢ ¢ 2 o ¢ o ¢ © o« o ¢« o o« o o o 28
1. EBrasable Prograamable Read-Only Memory . . 28
2. BRandom ACCeSS MEBOXY . ¢ « o o ¢ o e« o « o« 30

3. Blectrically Erasable Prograamable
Read-Only M8MOLY <« ¢« « ¢ « o o« ¢ o« o o « o 30
4, Liquid Crystal Display and Keyboard 30
5. Central Processing Unit .« ¢« ¢ ¢ ¢« ¢ « « o« 30
6. BRS232 Serial I/M POrt =« o ¢ ¢ ¢ o o o o o 31

T AT
. .

P gl 4

Iv. DETAILED PDBHS SYSTEHM DESCRIPTION . « ¢« ¢ o o « o 32
: A CONVENTIONS AND NOTATION o« « « ¢ o ¢« « o o o o 32
B. PHYSICAL MEMORY AND I/O PIRTS .« ¢ ¢ ¢ o « o « 33

e e e e —
.
&

UNV S S e T e

ey Y

T T T ey

l T A d —
~ wt e e et &, e e Wl e e [DY

1. HBardvare and I/0 Ports .

2. Data Structures . . .

C. VIRTUAL MEMORY AND CONTROL PORTS

1. Hardware « « « o o o «

L

2. Organization and Data Structures

v. THE DEVICE DESCRIPTION
A. THE HARDWARE . & ¢« o « « &

1« The Enclosure . . .

2. The Display . . « . .

3. The Keyboard . « « « «

B. THE SOFTWARE . ¢« ¢« ¢ « o «

1« The Calculator « . « «

2. The Database « « « « «

vi. SYSTEM SECURITY DESIGN « « . .
A. HARDWARE SECURITY MEASURES

B. SOPTWARE SECURITY MEASURES

1. Straight-through Cod2

2. HMaintenance of Systea Parameters

Tables in BtPROM . . .
3. K"s [J L] L J [2 * L L [] *
4. BExecution Vectors . .

APPENDIX A: THE LANGUAGE FORTH . . .
Ae WORDS o o o ¢ ¢ o ¢ o o o
B. SYSTEN DATA STRUCTURES . .
C. THE MECHANICS OF PORTH . .

APPENDIX B: STUDY STATISTICS « o« «
A. BACKGROUND ¢ « ¢ o ¢ ¢ o o«

B. METHOD OF ANALYISIS ¢« « « «

C. RESULTS OF THE ANALYISIS .

1. General Statistics . .

2. Wordd Length . « ¢ « «

33
36
37
37
42

56
56
56
58
58
61
64
64

75
77
78
78

80
81
84

86
86
87
90

94
9%
95
97
97
97

4., Initial Letters . « « <« o« o

LIST OF REFPERENCES =« ¢ o o ¢ ¢ o o o « o o

BIBLIOGRAPHY .« ¢« « ¢ © o ¢« o ¢ @ s o o o o

' INITIAL DISTRIBUTIOE LIST « o « o « « « o o

.
3

MAAALS AN~ s o b ad 404 b

‘{.;.‘.“!‘.‘T » Ta ™ e Ve LT T LY U e ST e TN e e TR T R aC Rt i, S A’ b S i Y G S M 2]
.

h.‘ .

5 3. Char, Digit, and Punctuation

104
104

11

113

115

LIST OF TABLES

: I. BNP Definition of Uword and Wordd . « « « « « &« 33
1I1. Virtual Memory Write-cycle Algorithma « & 44
IIX. Record Retrieval . . ¢ « « ¢ ¢ ¢ o ¢ o ¢ o o o o 66
Iv. Pile and Key Creation =« ¢ ¢ ¢ o ¢ ¢ ¢ ¢ ¢ o« o o 69
v. Pile, Key, and Record Deletiof . « ¢« ¢« ¢« o o o o 70
vi. Record Creation . « o o« ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o o o 72

Vii. FORTH-79 Required Word Set .« ¢« ¢« ¢ « ¢ ¢ ¢ o o o 88
VIII. General Statistics - BefOre o« ¢« ¢ e ¢ o o o o o 98

Ix. General Statistics - lfter e e L *® ® o o e e e e 98
X. Wordd Length Distribution . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o &« 99
XI. Chal’.‘ Statistics - Before ¢ e e e @ @ e o e o e o 100

XII. Char Statistics — After =« o ¢« o o ¢ o« o« = o « o 101
XIII. Digit Statistics — BefOr® .« « « ¢ ¢ « o « « « « 102
IIv. Digit Statistics — After « ¢« « o o o o« ¢« o« o o « 102
xv. Punctuation Statistics .« ¢« ¢« ¢« ¢ o ¢ ¢ e o o o « 103
XVI. Comparison with Standard English « ¢« ¢« « ¢ « « « 105
XVII. Initial Letters of Wordds - Before « « « « « « « 107
XVIII. Initial Letters of Wordds - After . « ¢« ¢« « « « 109

Lo N SEE oo o

AR 7~ ERNCCHRCA A A

M A 4

o b XL Ga L ER o an NN o o et g

O R

3.1
4.1
4.2
4.3
4.4
4.5
4.6
4.7
S.1
A.1
A.2

'''''''

LIST OF PIGURES

PDBNS Hardware Configuration .
PDBMS Physical Memory Map .
2816 E2PROM Configuration . .
Status Port Plags (IN 9FH) . .
control Port Plags (OUT 9PH) .

Database Physical Record Structure
Structure of a DB Dictionary Entry

DB Dictionary Worid Look-up .
PDBHNS Vocabulary Structure . .
Standard PORTH Memory Map . .

Structure of a PDBMS Colon Definition

PO PR Sy

MBI el Sa el e 2 e s

29
35
38
41
43
50
52
54
63
89
92

DISCLAIMER

Some terms used in this thesis are registered trademarks
of commercial products. Rather than atteapt to cite each
individual occurrence of a trademark, all registered trade-
marks appearing in this thesis are listed below following
the firm or individual holding the trademark.

Zilog, Incorporated, Cupertino, California:
280

PORTH, Incorporated, Hermosa Beach, California:
FORTH

Digital Research, Pacific Grove, California:
CP/M

National SQniconducior, Santa Clara, California:
NSC800

XICOR, Incorporated, Milpitas, California:
NOVRAM Non-volatile Static RANM

Greenvwich Instruments Limited, Greenwich, London, UK:
Instant RONM

T

LR A s e a0 SEEL A2

LA . SEe o e O

T T YT PTIV YR

[l T A N N A A P A i R CoaE R I R S i Aand et St et Sl bl

ACKNO WLEDGMENTS

The author would 1like to thank the following people
vithout wvhose help wuch of this thesis would not have been
possible.

Mr. Walter L. Landaker, of the Department of Computer
Science Laboratory, who helped in the hardware iaplementa-
tion by doing much of the bread-boarding and managed to get
the LCD (vhich had been received without the promised manual
and hardvare interface) operational.

Mr. MNichael A. Williams, also of the Laboratory, wvho
helped, not only in the hardware implementation, but also in
the hardware design. It was he who proposed interleaving
the B2PROM which decreased the average write-time by 400
percent. He also designed the "smart" ports.

Ms. Kathy Yamamaka, of the Department of Computer
Science, who went out of her way to help by “"greasing the
skids™ in the Supply Department to ensure that the amaterials
required by this research vere received in a timely fashion.

10

l.-Y'W:I }b'.','. .
kel PR

pom=s At R

AN ™ AT

I. INIRODUCTION

One of the factors vhich limits human performance is the
limited capacity of human meamory. Memory is commonly
considered to be divided into two parts: short-term and
long-tern. Short-tera menmory is ¢that part which we can
consciously access; it may be compared to the primary store
of a coaputer. It 4is characterized by rapid access and
volatility. Long-tera memory is analogous to secorndary
storage in that it 4is more permanent in nature than short-
tern memory and it requires more time and effort to record
information to and retrieve information from [1].

Short-term meamory is a major 1limiting factor on human
per formance because it is the memory which is consciously
accessible and thus our working wmemory, and it is very
limited in its capacity. This memory holds units of infor-
mation for up to thirty seconds. That period may be
extended through repetition and rehearsal. The size of
short-tera memory is approximately seven units of informa-
tion (plus or ainus two). The nature of these units is a
function of experience and training. For example, someone
familiar with BEnglish may £find it easy to remember seven
English words but difficult to remember seven Chinese ideo-
graas,. Thus it is easy to see that <the dinformation
procassing capacity of humans can be easily overloaded.
Long term memory limits per formance because of the time and
effort associated with fetches from and stores to it [1].

The idea behind a Personal Database Management Systenm
(PDBMS) is to provide an extension t> both short-term memory
and long-term memory. A good PDBMS should provide its users
vith means of storing information and later retrieving it
that are faster and aore efficient than ordinary human

11

L JNE e 4 e 0 i g

means. Long-term memory can be extended by allowing users
to easily store information wvhich they <£ind difficult to
aemorize. Numerical information such as phone numbers, safe
coabinations, and part nuabers are examples of information
which are usually expensive in the amount of effort required
to ensure +that they are not soon forgotten. Short-tern
memory can be extended by providing wusers with a way ¢to
relieve the burden upon its capacity. Instead of having to
rememaber a piece of information or a key (or cue) to
retrieving the desired information, a PDBMS can accept the
key as input and retrieve the desirei information. Once the
key has been entered into the systeam, it may be forgotten,
freeing a portion of short-tera memory for more information.
Also, retrieved inforaation need not be memorized if the
PDBMS records it in a manner which allows it to be easily
accessed. For example, information recorded on a piece of
paper or on a display screen need not be memorized if it is
within easy reach.

What should be the characteristics and what are the
requirements of a Personal Database Management System?
Because it is designed for the storage and retrieval of
pecrsopnal information, it is a single-user systea. In order
to be useful to a broad range of people, it should perait
interaction at different levels, depending on the sophisti-
cation of the user. Novice users will be easily discouraged
and see very little benefit if a system appears to be illog-
ical and complicated. Also, because of the personal nature
of the information in the database, ¢the system should
provide security to that information. Finally, in order to
be acceptable, it should be small, 1light-weight, and
inexpensive.

This last requirement was taken to indicate that such a
systea should be built using a battery-driven micropro-
cessor. Current microprocessor tachnology provides amore

12

Alaran |

HER LR

Pt it M Bl el S a4 A e Y - P B Rt e

computer power than is needed strictly for a PDBHMS. 'So the
design presented here incorporates the following additional
capabilities: 1) the ability to be used as a calculator, 2)
the ability to be programmed by the user, and 3) the ability
to be connected into networks or > other devices via an
RS232 serial interface.

The PDBMS is programmed in a non-standard version of
PORTH. The particular one used here is neither £ig-PFORTH
nor FORTH-79, the twvo nost prevalent versions of PORTH.
However, the basis for the language used is 8080 fig-PORTH,
version 1.3, which was partially modified to confora with
the FORTH~-79 standards {2]). Further modifications were made
to this based upon hardware characteristics, and the sugges-
tions and ideas of various meabers of FORTH Interest Group.
In spite of this, vhen referred to in this thesis, the
language used in the PDBMS will be called FORTH. One nma jor
distinction should be made, however, the PDBMS's base vocab-
ulary is called ROOT, not PFPORTH.

13

™ S
a4 . - Sl .
*

7 T T
B - KA

....... A . R SR R e e S L A

II. RERSONAL DAIABASE CHARACIERISTICS

A. BACKGROUND

The largest part of the information presented in this
chapter wvas derived froma detailed study of four personal
address books (Appendix B contains deatailed statistics from
this study). Address books wvere used as a basis for the
preliminary investigation of personal databases because they
vere found to be more structured, standardized, and easily
computerized than other personal databases (e.g., shopping
lists, appointment calendars, and things-to-do lists).

The people (some of wvhom worked with computers daily)
intervieved during the study indicated that the maintenance
of personal databases is not analogous <¢to manageament of
databases by computer. Indeed, the ways in which a database
management systea (DBMS) is structured, maintained, and used
is very different froam the way people manage their personal
information. The results of the author's studies and inter-
views seem to indicate that the essential difference between
DBMSs and personal information management is the number of
"systea" users. It is this difference that is the apparent
cause of most all of the other diffarences.,

Because DBNSs are normally organizational tools with
many users, records, fields, attribute values, query
languages, keys, etc., they must be standardized. Because
organizational data is entered and retrieved by nmany
different individuals and thus without standardization, it
would be difficult for one person to know of information
entered into the system by another, auch less retrieve it.
On the other hand, personal information is shared by only a
fev people, if any. An important point here is that in such

14

...............

R AR

T

\ SEENs 0 uh o M n L A a2 an i SERE Sk Bl grs

a situation wvhere there is only one user, that user knovs
(or knew at one time) all of the information in the system
because he entered it. People record and maintain personal
information in an auxiliary store in order to relieve thea-
selves of some of the burdens of recall and recognition.
Because 1long-tera amemory is generally considered to Dbe
persanent (1], the data recorded in auxiliary stores need
not be a verbatiam copy of the information which is to be
retrieved later. Truly personal information needs only to
contain enough context-specific cues to enable a person %o
reconstruct or vrecall the structure of their semantic
aeaory.

“The Recognition of Previous Encounters," by George
Mandler (3] describes semantic structures as an organization
of memory (referred to as a "familiarity variable%). These
structures represent the familiarity of events (and of the
entities which are part of an event), and are unique to each
particular event. Further, they are independent of the
context in which the event occurs or in which it |is
embedded. Two sets of independent processes operate upon
semantic structures: intra-event processes which are
referred to as "integration," and inter-event processes
vhich relate an event to others called "elaboration."
Mandler's hypothesis is that recognition is related to inte-
gration, vhich is developed through attentive repetition
(rote learning). Recall is related to elaboration, which is
strengthened by the establishment of relational 1liaks
betwveen the target event and other repreﬁentations in
Resory!. Mandler does not describe how integration and

1Recognition is the process 8: go ng'efro-oa faliliar

event to t e context which cause be th:
bered. g is the opgosite process. that is, resesber ng
an ovent ron its gerso attenpts t
relenb here

I I knows a liar

alp oz ng racoqnit gn. Reca i vhat a erson aﬁten ts to
O wh e knovws h fe to hia to get soaeth n the
vay holo, but has forgotton vhae,

15

elaboration manifest <theaselves except in an abstract wvay.
g They must involve the establishment of cues which act as
h - keys to semantic structures wvhether they might be direct (as
one would expect in the case of integration) or ipndirect (as
aight be the case for elaboration) access. It is these cues
- which must be available to a person in order to retrieve the
P desired events and entities. It is this that makes personal
3 databases different froa DBHSs,

A Bven though only the minimum number of cues need be

i saved in order to retrieve information, the author's studies
b3 revealed that usually more than the minimum required cues
X are recorded. Por example, <there is usually no need to

record one's parents' city and state of residence, yet every
address book contained ¢this, as well as other unnecessary
information. This is probably due in part to the fact that
address books are not alwvays personal databases, soaetinmes
they are family documents. Appointment calendars appeared
to be the tersest of all the personal databases studied. An.
example entry for March 10 nmight be, "Rebecca 11:30" wvhich
is a reminder that BRebecca has an appointment with Dr.
FPeeney at the Pediatric Group, 698 Cass Street, 11:30 A.N.,
on March 10th.

In order ¢to establish a common ground for coaparison,
the following terams will be used throughout this thesis.

" HEEA M S S R i

DA 4 O VI SN

T
¥ e

IR 5

es conta ecor
;gg;l ;§h§§¥ manually maintained file of
* §0 80 2‘ naé!ggl Bccaus. zhoso atabases ai
orn not sy stenmat! call lanag Toup, there s
gtugg analo ous t0 a PDBANS. ach ana s sopa:ate and

ct froa l other MDBs; an address book, appoint-
lent book, otc.. are sach MDBs.

CRHE futitmipee bnyee seserin, [, 0 200, 00
ted by t gﬁot: g:ou ping into the sane gif

16

s M B N L) e e e m e Tl el el el el L i

————rv
v

1343 4

Ty Fvr v rery

ed to e

. %{iﬁggz an entrxrin a file, n_an add: 53 book 2
"a

regs Eg sogil anngsq%géggg gs a%ded.

a record. n aneral 11 records
* g*‘%ﬂe sagn engg igve the sanme i d %hus struc-
Q). In an address Dbook, ds are usuall
:ilcd "name," “street," "cit state and zip code
3 3 Y' ’ P v
nd "telephone nuaber.

B. GENEBRAL CHARACTERISTICS

As stated before, people do not generally view personal
data as a database in the same sense as information in a
computerized database. Bach MDB tends to be viewed as a
distinct entity, unrelated to any other MDB. Thus there is
no notion of a database management system (DBMS) since the
MDBs are not managed together as a group. As a result there
is often redundant information in MDBs when they are viewved
as a group. Por example an address book and an appointaent
calendar probably both contain redundant inforamation about
an individual's insurance agent, realtor, dentist, etc.
Even though the possibility for joins and Cartesian products
exists, they are aot only not performed, but the concepts
behind these operations are apparently incomprehensible to
the layman.

The existence of separate MDB's or files can be intui-
tively explained by three reasons. Pirst, and nmost
obviously, is that the amount of effort required to maintain
even a partially integrated database wmanually costs aore
than the value gained by haviag such a database.
Maintaining such a database requires the establishaent of
all possible desired relationships before the iaplementation
of the database folloved by the aaintenance of complicated
and troublesome cross-indexes. Lass effort is required to
check one's appointaent book for app>intments and then go to
one’s address book to obtain the phone number to call in
order to confirm an appointament; or if the requirement for a

Ll

rvvv"",.?‘lv'q

g confirmation vas foreseen, to siaply duplicate the phone
&i nunber in the appointmsent book.

The second reason is adre subtle and aight be related to
the ideas expressed in reference (3]. BEven though the sanme
i entity (person, organization, etc.) nmay be included in more
h than one file, the different occurrences may represent i

dif ferent views of that same entity; that is, file entries j
are context-sensitive. When coaparing address book records
+0 appointment calendar records, it is very coamon to f£ind
that the address book entry for an individual is more formal
g than an appointment book entry for the same individual. Por
5 example "Richard BElton" might appear as "Richard and HNay
& Blton" in an address book, "Rich®™ in an appointment book,
and "Lt. Elton" in a personal note. This context-sensitive
nature of entries seeas to indicate that integrating a
personal database is much more difficult than in the case of
traditional DBASs.

The last reason is that inconsistencies between personal
MDBs (i.e., files) due to replication (redundancy) of data
is easily managed. This is not only because of the indi-
vidual and aggregate file sizes, but also because of the
nature of the data. The issue of size is obvious; the
important characteristic of <the data which aids in solving
the probleas of inconsistency is that the Kkeys used for
access are closely related, if not identical, to cues used
to reconstruct semantic structures. Por exanmple, vhen a
person receives a change to his friand Pat's phone nuaber,
it will probably proapt hia to aake a change in his
address/phone book. What changed was 1ot the entity "Pat"
but just a value of one of the entity's attributes. So for
the most part, the cues (vhich are context-free) associated
with "pat™ remain unchanged. Thers is a good possibility
_ that all occurrences of the 0ld phone number will not be
g updated. Later vhen he comes across an occurrence of the

A AR

y

e~y ar

b ey

PR A SR AL AR

it SR - RN

T

18

T T T
.

)

i

e

v 7~ e

e v".'..'-'_'. o
.

.t o e 2y RO st

Iy " TrTTY

old nuamber, it will elicit many of the same cues related to
"Pat" as would the address book entry. Chances are that he
vill remember that the nuaber was changed and vas recorded
in his address/phone book. It will be then that the incon-
sistency will be corrected, if it is at all. Perhaps people
rely wupon this and intentionally 10 not make any great
effort to seek out inconsistencies.

1. PRiles

Nanually maintained £files are apparently organized
in twvo vways: sequential access and direct-keyed access.
MDBs which are direct-key accessed are norsally recorded in
a commercially procured file or docuaent. Exaamples of these
files are address books vhich are designed to be kseyed on
the first letter of a surnase in the "name" field or
appointment books vhich are designed to be keyed on a date.
Sequentially maintained files are comaonly kept on less
rigidly structured media such as notapads, chalk boards, or
scraps of paper. Information is usually entered chromnologi-
cally. Shopping 1lists, <things-to-d0 1lists, etc., are
exanples of sequentially organized files. Another distinc-
tion between the two fils types is the time-value of the

inforsation stored in thes. Indexed files usually contain
information vwhich is to be retained for a 1longer period of
time than that contained in ssquential files. It vas not

ancommon to0 find address book entries wvhich wvwere more than
ten years old.

2. Records

#ith the exception of personal notes, records within
any particular file tended to be fairly uniforaly foraatted.
There is generally a core of fields which contain a value in
almost all <records. Hove ver many records contained addi-
tional fields beyond ¢ths “core-fields." In the case of

19

......

MRS 7 R

address books these fields were inserted into the pre-
printed record foraats by writing them vertically, placing
thes in an unused, unrelated field, or placing theam into
another record. The "core-fields® in address books are:
“name," "street,” "city," "state," "zip code,® "area code,"
and "telephone exchange and number."® Typical additional
fields contain information such as:

° %sgggg:z Model, Serial, Policy, and Social Security

e Additional Phone HNuabers (e.a., "home," “vork,"
::grretinq departaent," "service, "account inquiries,®

e Birthdays and Anniversaries.

e Additional Names (e.g., children's naames, points of
contact).

e Cards and Pavors Sent and Received.

e Additional HNiscellaneous Information (e.q. ®"When in
Seattle," "Neighbors in Nonterey,™ or »fncle Bob's
brother-in-lav"?.

In the case »o5f address books, record deletion
appears to be an unpredictable event and probably a function
of the =mediuam upon vwvhich it is recorded. Bound address
books contain aany more entries wvhoss validity are question-
able. Nany of these appear to be retained not only because
they vere entered in ink, <thereby making deletion a messy
affair, but for sentimental reasons. Hany of the very old
entries are for high school and childhood friends. Address
books wvhich permit easy deletion of records appear %o
contain fewer o0ld entries, but because deletions are not
recorded it is not easy to attribute this effect to the ease
of deletions.

20

TV

ARy 45

MNLINE

(el ™ (TR

3. Elelds

Even though the fields' types and numbers appear to
be fairly standardized, the contents of the fields is not.
Fislds appear to be variable length with no restriction on
content. Graphic, non-alphanumeric symbols such as hearts,
check-marks, and "happy faces" are not uncomaon. Some files
contain indicators of the validity of the information in the
field (e.g., "?" or "as of Dec 81", Abbreviations are not
consistently used in the same file; for example, one address
book examined contained all of the following entries:

Street St. Str.

Avenue Ave,

Virginia Virg. £ VA
Mr. & Mrs. Mr/Mrs ¥r. and Mrs.

C. DESIGE IMPLICATIONS

It appears obvious <that a PDBMS and a DBMS are not the
same. As such, it is reasonable to construct a PDBNS
differently from a DBHS. Because a PDBMS is used as an aid
to recall contexts from aemory, 2and the cues to these are
unique to each context [3], not only should the system have
no restrictions such as fixed fieldl lengths and attribute
values, but additionally it should:

e Allov the user to use 3py vord as a key.
e Be able to recognize and compensate for aisspelled keys.

e Be able to take into account keys which are sznonyls and
refer to the same entity for exangles see ¢t descr
tion of Il s, above). Also have the abil

to discr ate o&u n homonyas which appear to be the
same but refer to teren ttributes or entities (fot
exaaple, nCT abb reviat on for "Court®" in a

gstreet ddross versns "CT," as an abbreviation for
n"Connecticut").

21

el i, A " P 2 - -

Wher interviewing 1laymen, it was found that they easily
understand the concepts of "file® and "record," but not
nfield." This suggests that perhaps people conceptualize an
entity as a synergistic sum of its attribdtes rather than as
a relationship between attributes. Thus a record is the
smallest 1logical wunit wvwith which people normally deal
because it, as a whole, contains <the cues necessary to
reconstruct semantic structures. The number of fields in a
record may be related to an individual'’s ability to "inte-
grate" the corresponding semantic structure (3].

Because a PDBMS is an aid to an individual's recall, it
should faithfully preserve information entered and retrieve
it by logical means. If text compression or compaction? is
eaployed it must be transparent to the user. Logical
retrieval means that if the user f2els that he has given
sufficient inforamation to specify the desired data, the
system should be able to either retrieve the data or give a
conprehensible reason why it could not be retrieved.

A PDBMS should be "user friandly" and require very
little effort on the part of the user. This wmeans that
persons vho have no need or desire to understand cbnputers.
DBMSs, etc., should be able to use2 the systea. Further,
file, record, and field formats should be easily specified
vithout the need for a plethora of technical details. Entry
and retrieval of data should also be fast and easy. Nost
people who are not specifically trained on ‘omputers tend to
have auch less tolerance for poorly engineered computer
systeas or ones requiring a technical expertise than do the

2;9 t cong ession and congaction involve renoving redg

ant inforaat roa text s can | 3

eveﬁ resources than if the original taxt h d been store
e:enco between the tvwo is8 that an exact cog

rigina 1 taxt eioverable after coapression, ereas it

s fot froa conpact On.

22

AR SR AN
- ——— N

SBE. ~ RIS YA e

D™ SMASN A PrTPTTVT

IanENS goese

s A Qui's -

AL R S

r

systea's designers or computer scientists {(4]. Above all, a

computerized system must be better in
corresponding manual systea ([1].

23

every way than the

PAAACLI N R e T v d T LT

— Y - T TvY
s-.r ‘. L
5

;] . III. B5IGH LEVEL BDBNS SYSTEN DESCRIPTION

A. SOFTWARE

b When the user first receives the PDBMS, he sees only two

functions: a calculator and a database management systea.
r As the user learns how the systeam works, it is possible for
: him to expand the systea incrementally until eventually he
3 can reprogras a large portion of the system itself in FORTH
and/or assembly language.

Many of <the keys on the PDBMS's keyboard are program=-
mable. They are initially used to allow the user to enter
commands by simply pushing a key. Instead of +typing
WRECORD" when using the database management function, the
user needs only to push the "SHIFPT® and "R"™ keys and the
systea will enter the word “RECORD" for hinm.

1. The calgulator Punction

The calculator which the user initially receives is

Padi: SN 0t Sae due S 6

T MG AUl S e
. DD

much like any other calculator. Tvo major ways in which
this function differs froa most standard calculators is that
a series of arithmetic operations amay be entered at once,
and that the user may create and use variables. Unlike aost
calculators, <the action of most of the keys on the PDBMS is
simply to enter textual data int> the systea. The PDBNS
does not interpret most of the input until the ENTER key is
pressed. So the followiny two key sequences have the saame
effect, i.e., to add two to three and obtain five.

| 4
t
b
[
&
N

sty P wIYTTY voiw p-

pL

F’Wﬁ - = -
b

LA SR

IO) Sty

Linat e 4 R i/

2 2
<enter> <{space>
+ +
<{enter> {spaca>
3 3
<enter> <space>
= =
<enter> {enter>

Like in FORTRAN, variables are created when they are
first used. If a word or a charactar is found in the input
vhich the calculator cannot recognizas and it is to the right
of an equal sign, it assumes that it is a variable declara-
tion and creates one. If an unrecognizable word or
character is encountered to the left of an equal sign, an
error condition is signallad.

2. The Database Magagement Punction

The database manage ment function allows the user to
create files and records, delete filas and records, retrieve
records, and use keys (i.2., passworls) to seal records and
other keys as a means of providing data security. The user
is not required to deal directly with the technicalities of
database data structures, he only needs to know that files
are a collection of records, all having the same format.
Piles appear to the user to be separate and disjointed,
similar to MDBs. The procedure for creating a f£ile requires
only that the user specify the file's name and the names of
the fields within the records of the file. The user is led
through the process of file creation and record retrieval by
system proapts,

Records may be retrieved by using apy word (or group
of wvords) contained within thenm. The only restriction on
this is that the user must specify which £ield is to be

25

YTV MU

[,

v

B 4

adednins s SAbChShathtie S S adetnd S

searched for the target word(s). This restriction should
not seem unnatural to the user but, rather, necessary.
Because any word is a possible key attribute, the user must
be able to specify the context of the target word. By spec-
ifying the £field name with queries, the user is able to
retrieve a record using Mc. York's last name without also
retrieving all of the records containing "New York."

Be DATA STRUCTURES

The PDBMS uses some data structures which wmight be
considered unusual when coapared to other database applica-
tions. Some of these are characteristic of FORTH and others
are used because of the nature of the systenm.

1. Digctionaries

Tvo dif ferent dictionary structures are used in the
PDBMS. One dictionary is that which 1is associated with
FORTH. The second is conceptually more like a dictionary,
as a layman might think. A PORTH dictionz . is siaply a
linked list of PORTH definitions. The definitions are main-
tained in chronological order b5¢ thei: time of creation.
These definitions typically describte the following basic
PORTH word-types: colon definitions, constants, variables,
user variablses, and vecabularies. Colon definitions are
FORTH definitions which are defined in terms of previously
created definitions, similar to procedures and functions in
other languages. Vocabularies are "sub-dictionaries® and
are used to deliait the scope of definitionms.

The other dictionary is called the DB dictionary and
it is used to store the words enterad and contained in the
dat abase. Words are entered into <the dictionary and
looked-up by hashing to a linked list using the first letter
or digit of the target word, and then traversing the 1list,

26

- — VT Ty
Y P

B ERASERE Maaie R R - S R A L S L e T A A e A
N < N P - - ~ S T N . . LN . L. <. -

which is alphabetically sequenced. Punctuation is not
stored in the DB dictionary.

2. PRiles

Files are complet2ly invertad. They contain only
administrative data, and indices and pointers into <the DB
dictionary. Information vhich is retrieved froam the data-
base is reconstructed a word at a time by 1looking words up
in the dictionary (punctuation is stored directly in the
database in its ASCII format). Memory for files, the DB
dictionary, and sealed keys (di scussed later) are allocated
from a heap so that none of <these data structures occupy
contiguous memory. A £ile2 is definad as a PORI'H vocabulary
and its definition contains pointers to the first and last
records in the file. Records are maintained as a circular,
doubly 1linked 1list. The fields are dJdefined as FORTH
constants in their respective £fila's vocabulary. Their
value is an ID number which is used to relate the fields in
the database to the names assigned to> them by the user.

3. Legical Records

To “he user a record appsars to be a collection of
information related to a particular antity. The fields help
to organize the data by grouping it. The logical record
itself is variable in 1length. The first set of bytes in a
record contain the record's access descriptor, which is
variable in length. This is followed by the links (or
pointers) to the previous and next records in <the file.
Pollowving these pointers are the fialds which are fixed in
nunber (as determined in the file's definition), but are
each variable in 1length. Pields are separated by an
end~-of-field (EOF) marker. Because records contain a fixed
nuaber of fields, the last BROP serves as a end-of-record
marker.

27

v

ST

DA S s an o
v

4. Fields

Fields are a continuous string of bytes which repre-

sent the data contained in the fiell. Punctuation appears
in its ASCII format (one character per byte). Words are
represented by two bytes, the first contains the vord's
initial letter (or digit) vhich is used to hash into the DB
dictionary. the second byte is a number used to identify
the particular member of the 1linked list hashed ¢to repre-
senting the target word.

5. Keys

Keys may be <thought of as passwords vwhich are used
to secure records, PORTH screens, and other keys (called
sealed keys)e. These objects (i.e., records, screens, and
keys) all have access descriptor fields which contain infor-
mation about what keys ar2 necassary to access the
particular object. Keys allov the user to construct fairly
complex access mechanisas.

C. HARDWARE

Pigure 3.1 is a simple picture of the 1layout of the
PDBNS's hardware. The system makes extensive use of CMOS
technology so that it can be battery driven. There are six
major components in the systen.

1. Epasable Prograsmable Read-Only Meamory

Erasable programmable read-only memory (EPROM) cccu-
pies the systea's 1lov aeomory and contains the PDBHS's
operating systea. There are 16K bytes of EPROM in the
systea. As its name implies, its contents cannot be altered
by the user.

28

T e T AT TR e m T T T e T ey T T ST T T T T T T T e e e e

¢ 7.

. NSC800

Rl
Lt

Keyboard

=

16K
EPROM

PP v ———

LCO

Ll

.

SRR ARS ¥~ ST

16K
RAM

EEPROM

'tigu:e 3.1 PDBNS Hardvare Configurationm.

29

L;w'__-‘_.-;‘.'-.. el : Al e aaa . a A et ala e o e m alat oA maA . maa e =k e a0 a - s e

A i

FalRaan) RAAAranan
u. et
[

Ty Trvf‘lﬁ“l“.ll R

R 1

——

Y T

2. BRapdea Access Hemoly

Randoa access memory (RAM) is used by ¢the user as
his wvorkspace. Systes paraseters and data structures which
change according to the runtiae environaent are also main-
tained in RAM. There are 16K bytes of RAHN.

3. Electrically Erasable Prograamable Read:-0ply Yesory

Electrically erasable prograamable read-only memory
(EEPROM or E2PROM) serves as the systea's secondary storage.
The unique characteristic of E2PRON is that it can be erased
(i.e., written into) under software control, as RAN can, but
it is non-volatile (i.e., its contents are not lost vhen the
power is turned off). Part of the BZPROM is not accessable
to the user because 1t is used by the system for E2PROM
meaory sanagement, and dJdatabase sanagesent and storage.
What is not used by the system is available to the user as
FORTH screens.

4. Liguid Crystal Display apnd Keyboard

The 1liquid crystal J4aisplay (LCD) serves as the
systea's console. It contains two rows of 20 characters.
It is attached directly ¢to the systeam's bus and any data
written into mesmory beginning at address C000H appears on
the LCD. The keyboard provides the means by which the user
can directly input data into the system. It is connected to
the systea's bus via a parallel I/O port.

5. central RBrocessing Umit

The PDBHS uses an NSC800 aicroprocessor operating at
a clock rate of 1 nz, This is a CNOS aicroprocessor which
is dowvnvardly compatible with the 280. It wvas chosen as the
system's CPU because of its low pover consumption and the
availability of softwvare. The slov speed is not an issue

30

with this systea because of the naturally slow
human-coaputer communications,

6. BS232 Serial IR Razt

5 This port allovs the user to interface
h with other systeas.

- -

k)|

[;rrvv.rf"""'tv;rfiff?t“ﬂ
p
!
!
E
9
b
1
!
P
i
P
4

nature of

his systea

IV. DEIAILED RDBHS SYSIEN DESCRIPTION

A. CONVENTIONS AND NOTATION

The nature of words in PORTH does not lend them to be
referred to by enclosing thea in quotes, so instead they
vill appear in upper-case boldface. Hovever, because
boldface punctuation is often hard to distinguish froms
standard text punctuation, <the following eight PORTH wvords
vill be enclosed in braces:

: . ’ H ! ? . "

Additionally PORTH words composed entirely of strings of
these characters will be enclosed in braces (for example,
."1.

Pinally, to avoid ambiguity, the following conventions
vill be used vwhen using the three words "key," "word," and
"dictionary." When there is a possibility of confusing the
FORTH meaning of "word®" (described below) and the accepted
computer tera "word" (i.e., two bytes or 16 bits on the 8080
and 280 microcomputers), the former "word" will be called a
"vord" or a "PORTH wvord," whereas the latter "word" will not
be used, instead "two bytes" will be used. Adding further
possibilities for confusiosn is the ¢third aeaning of "word."
This third meaning is the usual Eanglish connotation of
"yord" and these "wvords® are data in the PDBNS. The ubiqui-
tous PORTH response, "OK," and words entered by the user as
responses to the systea prompts and as data to be included
into the database are "words®" in this third class. Data
words of this type vill ba called "uwords." Because uwords
entered into the database asay be altered before <+they are
entered into the database dictionary, the words which reside

32

»d

et

T e

-y

TABLE I
BEP Definition of Oword and Wordd

gvord ::= <wordd><punctuation>|<punctuation>
punctuation ::= elel/Zl® =)= |<spaced> (3| (1) I:] ... otC.
space ::= 208

vordd ::= <wordd><char>|<char>

char ::= 1121314 1516 171819101AI1B} ... IX1YI12

in the database dictionary will be referred to as "wordds."
Table I shows the BNPF definitions of both uword and wordd.

In order to distinguish between a "key" on the keyboard
and a "Key" which is used as a password to SBEAL and UNSEAL
data objects, the latter "Key” will always begin with a
capital “K." Pinally, because many of the systea data
structures are not only aaintained as FORTH dictionaries
(also referred to as vocabularies); but wordds are stored in
a data structure which is not a PORTH dictionary but which
may also be rightfully called a dictionary, the following
convention will be followed. When the possibility of ambi-
guity may exist, the dict ionary being referred to will be
prefaced by its name (e.g., root dictionary, DB dictionary,
etc.) .

B. PHYSICAL HENORY AND I/O PORTS

1. fazdware and I/Q Razts

Physical wmemory is that aemory in which PORTH
prograss execute, This aemory lies entirely within <the
user's address space. The PDBMS's physical aemory consists

33

PO

{". e Y R Ak
.

. -

FORDL gl ["v.‘vv —
.

r-
»
b
=

atnfinimtineind PP W SO UL ST S s e o

AU e ey Bl Sin Sl iRt Sinbi S Hath it o w - 5 L i e T v P T ———" —

of a little more than 32K bytes (see Pigure 4.1). The lowver
meaory (00008 to 3PPFH) is EPROM, and the high memory (4000H
to 7PTPrH) is RAAM. Additionally there are 256 bytes of
aeaory located at addresses C)00H through COPPH; the first
40 bytes of these 256 bytes represent the 2 lines of 20
characters on ¢the 1liquid crystal display (LCD). The
contents of these memory locations are interpreted as ASCII
encoded data and are airrored on the LCD. Thus the LCD is
directly addressable via the systea‘’s bus. Finally, memory
locations PPOQH to PFPFH comprise tha virtual B2PROM window.
When a segment is accessed from E2PROM by writing its
segment nusber to the segment registar and "powering up" the
E2PRONM, it appears at these addresses and may be read from
and written to. When E2PROM power is off these addresses
are izvalid.

There are two ports which are directly associated
with the user's address space and accessible to hia. One
port is a read-only port used to receive data froa the
keyboard (it is envisioned that the keyboard will eventually
be tied directly to the systea’s bus). This port is located
at FBH. The other port is a UART port configured for an
RS232 serial interface and is located at PAH.

Pinally three 1locations are set aside as Jjump
vectors., These are predetermined by the NSC800 hardware in
interrupt mode 1 vhich minics the Z80. The cold boot vector
is located at 00f. The non-maskable interrupt (NMI) dump
vector is found at 66H. This interrupt is generated by two
conditions: whenever the systea is "turned off*" by *he user
and vhenever the system is reset (via the reset button).
Because of the slow natura of the EZPROM, it may be possible
for the user ¢to turn the power off or reset the systea
before a wvwrite-cycle involving a large block of data has
been completed. The virtual meaory manager is the ultimate
recipient of NMIs. Upon receiving one, it waits for the

34

NARSR A Iol S~ NSRS INE

Tty

T et

YTy

W

D S Jut S e J i

R A S S

T

EEPRON FORTH Dictionsry
WFFN
Syeten verfsoles
Syetena Loaded Screen Definitfons
o User Dictionary
0P o 4dH Ped
7008 Peraseter Stack
Inout Message Buffer
008 Aeturn Stack
]
- Veer veriedles
8lock/Oets Buffere
b add
Irvaifa Adorees Space
([[
core LCD ¥ingow
FFO0
o EEPRON ¥{ndow
Pigure 4.1 PDBMS Physical Neamory Hap.

35

OSSN S TR SR

A OGN ~ B
: ey, —
T :
. .

B~ t

TTTEL,YLTETY TSI LY T T

-~y

t{_ﬁﬁ ,,r

e B e s N TR T DR N . B L. T L) i g - - . TR AN A

write-cycle to be completed and then sets bivs 1, 0, and 4
of the control port accordingly. After doing that, a Jjump
to vara boot is executed. Setting bit 4 to one when the
power svitch is in the on position has no effect, SO the
sane interrupt handling routine correctly bLandles both
interrupt sources. Ten seconds after an NNMI generated by the
pover-off condition, the hardware autoamatically shuts itself
off, if it is still on at that time. The third location is
388 wvhich contains the maskable interrupt (MI) vec*or. Both
the keyboard and E2PROM generate interrupts which vector
here; the device requiring service is deterained by reading
the status register (described below).

2. Data structures

Pigure 4.1 shows the allocation of physical memory
to data structures in the PDBNS. It varies froa the config-
uration in Pigure A.1 only in that it has data buffers and
pointer buffers. These buf fers share memory with the buffer
blocks. Block and data buffers are aot used concurrently so
they do not occupy the buffer area at the same time3d. The
data buffers are used for encoding and decoding individual
database records. Records are read into the buffers as they
appear in E2PROM (less key ID numbers and adainistrative
pointers) and then are decoded into their ASCII representa-
tion vhich is placed into the current record buffer and the
LCD window. Probably only a portion of the record fits into
the 40 character LCD. The first tvo bytes of each data
buffer contain the resident record's virtual pointer (PFPPH
indicates an empty buffer).

3Bven if the PDgus is designe so _that it LOADs defini-
tions from screens durin execution of database operations,
there is no problen. This is because the block buffers are
not used during a LOAD; the PR2PROM is siaply read directly
vithout using a4 buffer.

36

g
3
ﬁ

The pointer buffers serve several purposes. During
retrieval operations buffer number one holds the pointers to
records to which the user is authorized access and which
bave satisfied all query conditions processed so far. The
second buffer holds pointers to> records to vhich the user is
authorized access and wvhich satisfy the current query condi-
tion being processed. After the completion of the
processing of each query condition the intersection or union
of the two buffers (depending upon ¢the guery) of <the two
buffers is placed into buffer one.

C. VIRTUAL HENORY AND CONTROL PORTS

1. Hapdware

In the PDBMS, E2PROM is used as secondary storage.
A total of 8K bytes of BR2PROM is included and it is
segmented into 32 segments, each 256 bytss in size.
Segments (analogous to PORTH blocks) are further divided
into physical records 16 bytes in size. Pigure 4.2 shows
the bus interface of the Intel 2816 E2PROM chips. As in
standard FORTH, the user and user programs deal vith phys-
ical addresses only. The user can only refer to virtual
memory by using screen nuabers. Hovever, soae PDBMS wvords
use two byte virtual addresses to access physical records in
virtual memory. Only asseably language coded words
("lov~-level" words) can directly fetch and store bytes in
B2PRON via the window.

PDBHS virtual addresses consist of two bytes. One
byte contains a segment number and the other a physical
record number within <the segaent. Because only four bits
are needed to designate a physical racord, if it were tech-
nically feasible the - 'stam could accoamodate 512K bytes of
E2PROA.

37

“
Oate Sus
F ——— g
) g | —] —
g Ow | | Laten ow | | Laten ovr || Laten ovr | | Lotem
! —J g
: me 2016 2010 Segment
f SEPRON €EPROM CEPAOM EEPAON Regieter
N
p yte dyte yte oyte
b] 1 2 3 [‘

Ty

e AR el b4

g e cn e gaen
)

A

m —
socress | Acr EEPROM Switen
Laten
Controller .
Switeh
Pigure 4.2 2815 B2PRON Coafiguration.

38

Only 15 of the 16 bits are used for virtual
| addresses. The high bit (bit 7 of the Most Significant
g‘ * Byte—MSB) is wused to differentiatse virtual from physical

addresses in E2PROM and RAN. Virtual addresses which move

from E2PROM to RAM and vice versa must pass through 1low

level PORTH words which ensure RAM and E2PROM virtual
.! addresses never get mixed in with each other. E2PRONM
virtual addresses have their high bit set %o zero while RAM
- virtual addresses have their high bit set to one. Thus

virtual addresses appear to be out-of-range references
1 vithin the domain in which they occur. For exaaple, if an
address referenced inside an E2PROM segment 1is less +han
8000H, then it is a virtual address to another sagment.
Intra-segmnent addresses are alvays greater than or equal to
‘ FFOOH (all of which have a high bit of one). This means
! that, as in standard FORTH, "programs™ cannot be executed
é directly from secondary storage but must be LOADed first.
This allows 3]l code field addresses (CFA) to be interpreted
as physical addresses, vhet her they occur in RAM, EPROM, or
E2PROMN, so there is no problem associated with storing
constants and variables in B2PRON. Care must be exercised
E to ensure that LCD window addresses are never used ia the

same RAM context as RAM virtual addrasses since they would
be indistinguishable from each othér.

The E2PROM can be read in 450 usec, however it
requires 20 msec* to writa one byt2 (all of the bytes on
each <chip may be -erased in one 10 m@msec operation).
Additionally the 2816 must be strobed with a 21 volt pulse
during the write process. This means that E2PROM cannot be

P

- - D W D Es S T WD P > -

¢Intel iterat states that their BzPRou %ui:es 10
BSeC per wr te, is true. Howz2ver, in order €£o ensure
tg the data is rogerly recordel, the addressed byte

d contain PPH befora it is u:ztten into if a vr te
ies res a zerog bit to be change one. rhus wris g
1 ves two write operations: i3] set the target byte t

] FFH, and a second to write the desirad value.

! 39

T Y Tey———y

“lanl

"‘TE
B

P

v

A 4 be

treated the same as RAM. Other non-volatile memorias vere
considered for this design, such as NOVRAM and Instant ROM.
Both of these alternatives can be treated almost as if they
vere RAM, however they were judged unsuitable. NOVRAM was
not fourd to be a feasibles choice because of its small size.
The largest NOVRAM chip contains only 256 bytes, thus 8K of
NOVRAM cannot be battery powvered because of the large nuaber
of chips that would be regquired. Instant ROM was also found
to be undesirable because it contains its own battery power.
The on-chip battery is guaranteed for three years, and this
is hardly suitable for a permanent database. Currently
available hand-held computers use concepts similar ¢o
Instant ROM, they use CMOS aemories which are constantly
refreshed, even when they are turned "off."

The E2PROM and the PDBMS is controlled through three
control ports. One port, the segment register, is used %o
select the desired segment. This port is located at F8H and
is write-only. The second port is the status register. It
is located at P9H and it is read-only; it reflects the
systea's current status. Pigure 4.3 shows “he status port's
con figuration. Complementing the status register is the
control register which is a write-only port located at F9H.
The control register is used to effect system changes. This
port is described in Pigura 4.4. These ports, as vell as
all other ports, are "smart® ports in that they only accept
instructions from code being executei from EPROM. It does
this by checking the program counter which the NCS800 places
on the address bus prior to fetchiny an opcoda fetch. If
the A15 and/or A4 lines of the address bus are high the
next instruction is ignored. E2PROM pover and write-power
are turned on and off by setting bits 0 and 1 accordingly.
Whenever either of these bits is set to one, bit 7 of the
status register is set to zero. After the chips have been
powered-up, bit 7 of the status register is set 4o one, so

40

PARES ~ DI

T

Flag Meanfings

Not uvesd

Pigure 4.3

11 CEPROM resoy
03 EEPRONM net resdy

it CEPAN orfte-power fe on
03 CEPAOM write-pever e off

1: CEPRON Interrupt perding
03 No EEPRON interrupt pending

13 Keyboerd interrupt pending
83 Ne keyboerd {nterrupt pending

13 UVART recefiver resdy
03 UARY recefver not resgdy

13 UART tranesftter reedy
0s UART trenemsftiter not reedy

Boot-up values

n/s

Status Port Plags (IN 9PH).

1

is bit 6 or 5 (depending upon whether bit 0 or 1 of the
control register had been set). ddditionally, vhenever bit
7 is set to one (except during a cold boot of the systea),
an MI is generated. When bit 7 of the control register is
set to one, bit 7 of the status register goes to zero. When
the E2PROM write-cycle has been coapleted, bit 7 goes high
and an MI is generated.

Changes in bits 0 and 1 of the status register do
not generate interrupts, but wvhen bit 2 goes high (indi-
cating keyboard 4input) an MI is generated. Reading the
status register resets bit 2 to zero.

Notice from Figure 4.2 that the four 2816 chips are
interleaved so that all addresses egual to zero, mod four,
are on the first chip (i.e., those addresses whose last
hexadecimal digits are 0, 4, 8, or Q). Those equal to one,
mod four, are on the second chip, etc. This arrangement
facilitates fast writing of blocks of data to E2PROM because
four contiguous bytes may be written simultaneously. Thus
in the best case (when four contiguous bytes are written)
the average write-time per byte is approximately 5 msec and
an entire segment can be written in 1.25 seconds. Actually
more time is required, but the additional time is minor when
compared to the gross nature of the E2PROM write-time. The
additional time involves reading and comparing the contents
of the E2PROM to the appropriate buffer's contents (data or
block buffer). The entire write-cycle algorithm is shown in
Table II.

2. Qrganizatiop and Data Stpuctures

The 8K bytes of E2PROM are divided into two types of
segments: systex segaents and block (or screen) segaments.
Systea segments are owned by the system and cannot be
directly accessed by ¢the user or his prograas. Block
segaents are those wvhich contain scraens, in the usual FORTH

42

R e e e e e I I Tl T

> 8fits B1t Set Meanings
13 Stert EEPROM write-cycle
'l' 7 01 Mo effect
6 Not ueed
; S Not ueed
2
13 Turn gystem off (CEPAOM must De of f firet)
4 0z Ne effect
3 Mot used
2 Net Ueed
1t Turn EEPRON erite-veltage on
1 83 Turn EEPRON write-cycle voltage off
0 1t Turn CEPRON power eupety on
03 Turn CEPRON power ewpDly off

Pigure 4.8 Control Port Plags (OUT 9PH).

43

tui

TABLE 11
Virtual Memory Write-cycle Algoritha

J = START_OP_SEGMENT;
REPEAT UNTIL NO_MORE_BIYTES;
DO I =J TO J+3;
READ E2PROM_BYTE(I):
IP BOPPER_BYTE(I) #» E2PROM_BYTE(I) THEN DO;
IP BUPPER_BYTE(I) & E2PROM_BYTE(I) # O THEN
B2PROM_BYTE(I) = FPH;
E2PROM_BYTE(I) = BUPFER_BYTE (I);
END DO;
END DO;
CONTROL_PORT_BITS(7) = 1;
LOW POWNER HALT; /¢ WAIT FOR INTERRUPT 2/
DO I =J TO J+3;
READ E2PROM_BYTE(I);
IP BUPFER_BYTE(I) ¢ E2PROM_BYTE(I) THEN
SIGNAL (E2PROM_WRITE_ERROR);
END DO
Jd=aJd ¢+ 4
END REPEAT;

1

sense, and are available to the user. Blocks are allocated
sequentially in a round-robin fashion by the memory manager.
This means that the next segment to be allocated is the next
higher unallocated segment after the last allocated segment.
fhen the 32nd segment is reached, 1llocation begins again
fros the first segment not initially assigned to the system
(i.e., vhen the softwvare was placed into the systenm). This
scheme is wused in an attampt to uore uniforaly distribute

4a

T b 2 80 ot o e v
NS R AR DOME S

R Sl

the E2PROM use. If a "lowest available segment algoritha®
vere used, there would be a higher probability that portion
of E2PROM assigned to the 1lowvw numbered segments might "burn
out" (E2PROM is limited to> 10,000 write operations to each
individual byte).

a. Systea Segments

. System segments are those vhich are used by the
PDBMS for virtual aemory management data structures and the
database. The user canndt directly access these segaents
because any saegment allocated to the system is not placed in
the block auaber dictionary. System routines address these
segments directly (i.e., they "know" the physical segment
nusbers vhereas the user knovs only virtual block or screen
numbers) . At least four segments are dedicated to the
systea; the system and the user coapete for the remaining
segments (less system message screens) which are allocated
on a first-come, first-serve basis. Additional systeam
segments (beyond the dedicated four) are used to accoamaodate
the expanding database. Because the database resides in
systes segments, the user cannot see their physical struc-
ture; he is limited to viewing it through the PDBMS. The
first four segaents are structured as described below.

(. Parametar Table. This segment contains a
collection of system parameters and tables. For exaaple,
most of the cold boot paraaeters are loaded froam here. Also
located here is the vocabulary table.

(2) . Key Sub-Dictionary. Security in the PDBHS
is provided in par®t by Keys. These Keys are used to seal
records, blocks, and other Keys. These Keys are maintained
in a linked list dictionary as a separate VOCABULARY. The
Key vocabulary definition is located in EPROA. The code
pointer of each Key points to the run-time code for CONSTANT
vhich is located at docon. Thus when the Key is executed,

4s

it returns the contents of its two byte parameter field
address (PPA). The value held in th2 PFA may have ¢wo mean-
ings. If the value returned is less than 128, then it is
the Key's identification ruamber (ID). If it is greater than
128, then ¢the value returned is a virtual pointer to a
sealed record containing the Key's ID nuaber. The Key ID
value, PFH is reserved for the null Key, vhile the value O00H
is reserved for the system's Key. Also the value PFEH is
used as a substitute ID for <the ID value of Jdeleted Keys'
IDs in access descriptors. The use of Keys is discussed in
greater detail in Chapter VI. The Key vocabulary, besigdes
containing Keys, contains worls; these words are stored in
EPRON.

(3). Block Number Dictionary. The segment
containing this is divided into three parts. Pour bytes are
set aside as the segament allocation table, four bytes are
used as the segment allocation sequencer table, and the rest
of the segment is used as a vocabulary for virtual block
numbers. Each bit in thes segment allocation table repre-
sents a segment. If a bit is set t> one, the corresponding
seganent has been allocated. The sequencer table has only
one bit set, the one corresponding ¢> the last segment allo-
cated.

The virtual block numbers are maintained
as a FORTH vocabulary, as are the Keys. Also like the Kay
vocabulary, the definition of the block nuaber vocabulary is
located in E2ROM. However, unlike the Keys, virtual block
numbers are fixed 1length name, one byte constants. This
allovs virtual numbers %> be assigned to all of the origi-
nally unallocated segaents. This liai*ts blotk nuambers to
four characters in length. This dictionary is static and
alvays contains 28 entries. Entries are resoved froa the
dictionary by blanking out their virtual number (i.e., the
entry's name field) and satting the smudge bit so they will

46

"

i Ak

YTy

O FT T LT

Freyyy Yoo
p

not be found. When a virtual block number is entered by the
user, the entire dictionary is searched. Por example the
folloving keyboard entrias would trigger searches of the
dictionary for "1® and "25" respectively.

1 LIST
25 LOAD

If "1™ had not been found in the dictionary a block buffer
(located in physical aemory) would have been allocated to
virtual block "1.% The virtual number *1" would not be
entered into the block number dictionary until it was
vritten to E2PROM. If "25" had not been found the usual
FORTH error condition would have been raised.

(4) . The Database Segment. This block is
broken into two parts. The first contains a juamp table into
the DB dictionary. There is one jump vector for each prin-
table ASCII character allowed by the system (a maximum of
64) . A character's 3jump vector is hashed to using the
following equation on the character's hexidecimal value
(called “charm).

Location of jump vector =
{(char - 32H) * 2) + PPFPOOH

If the vector is equal to zero, then the character is punc-
tuation (as described 1in Table I). Punctuation is not
stored in the DB dictionary. If the vector is -equal to
PPPFH (uninitialized B2PROM), then there are currently no
wordds in the dictionary starting with that letter.
Othervwise the vector is the virtual address of the first

'physical record in an alphabetical linked 1list of wordds

beginning with that letter. The next four bytes of this
segaent contain a bit map of the segaents. Like the segment

47

Y v—-w‘-vvrr-vv-,v:s—rrv....
L AR . R

[WYY

allocation table, a bit is set to one if +he corresponding
segment belongs to the database.

The second half of this database segment
is used for the beginning of the file and field name vocabu-
lary. Field entries are simply FORTH constants which return
their field ID number (0 td> 255). Pile entries are modified
FORTH vocabulary definitions (they contain five extra bytes
used to store pointers to the first and last records in the
file, and a field count). The fiell names are entries into
the *"file vocabulary® to which they belorg. This allows
PORGET to be used to delete files. 0f course PORGET is not
sufficient by itself; the virtual zemory allocated to the
forgotten entries amust be turned back to the systea.
Because of the nature of record entries in the PDBMS, fields
cannot be individually forgotten. As with the Key vocabu-
lary, the file vocabulary definition, as well as some other
words, reside in RBPROM.

When information is added to the database,
it expands in three ways. Pirst the file and field vocabu-
lary grows to accommodate new fila and fie}d definitioans.
This dictionary may spill into additioral segments.
Allowing this dictionary to exist in more than one segment
creates some probless which must be specifically addressed
by the interpreter/compiler. Off-segment references can
only address 16-bit physical records, so entries of this
type cannot be positioned in a "foraat~-free" manner. Thus
entries in this vocabulary are all placed in memory taking
the physical record into consideration (i.e., beginning on 2
physical record boundary). A benefit of this is that *he
entries may be mixed into the same segments with the DB
entries, file logical records, and sealed Keys.

The database 1itself amay be considered 2
totally inverted file systea. Records contain only PDBMS
inforsation and pointers to dictionary entries of wordds

48

v v

MIRAS SRS A

which appear in the record. Pigure 4.5 shows a typical
entry in the PDBMS. The system knows how many fields are in
the currently open file, so it uses the 1last field's
end-of-field (EOF) as the end of record marker (EOR). The
BOP is the same character as the null Key, making PPH (blank
E2PRON) a general systea o2nd-of-data marker. When a logical
record is broken over a physical record bourdary, the last
two bytes of the physical record contain a pointer to the
next physical record.

Pields are strings of ASCII characters
followed by an entry ID number. The ASCII letters are the
initial 1letter of the wordds (i.e., transformed uwords)
originally entered into tha record by the user. The letters
are used to hash to the jump vector table on the €first
segment of the database. DB dictionary entries are main-
tained in an alphabetical linked list. The correct wordd
corresponding to the uword entered into the record is found
by matching the ID nuaber following the letter used as input
to the hash function ¢to the ID number of a wordd on the
linked list hashed to. Punctuation is not followed by an ID
nuaber and the record decoding routines "know" 1ot to look
for an ID number in the record bacause punctuation jump
vectors are equal to zero.

Pigure 4.6 shovs a typical dictionary
entry. This structure is an expanded and modified version
of the one used in Craig language translators [5]. The
entries are designed ¢to take advantage of the alphabetical
nature of BEnglish language dictionaries. The first byte
contains a zero and is ignored when traversing the DB
dictionary during a wordd look-up. It is placed there to
prevent an accidental retrieval by non-dictionary routines
wvhich always ¢treat the first byte as a Key. The second
byte, the copy byte, contains the number of leading charac-
ters in the current wordd which match the leading characters

49

9

g YL T TTLAY T
L]

T

TR T S YW T T T

——— RIS e M

Key 1D

Key ID

FFH (Null Key)

Previous Record Link

Next Record LIink

ist Character
1st Fteld

Worda ID

Rest of lst Fleld

FFH (End of Fleld)

1st Character
2ng Flelg

Wordd ID

Pigure 4.5

Database Physical Record Structure.

50

S s 4

D e

kﬂ—-ww —— H-v. -
.

MACAE IREaS

P

in the previous wordd on the linked list. The link bytes
contain a pointer to the next wordd in the linked list. The
add byte contains a nuaber, which when added <%o the
“copy byte ¢ 1" character of the previous wordd yields the
correct "copy byte ¢+ 1% character of the current wordd. The
bytes following the add byte contain the ASCII characters of
the current wordd after the "copy byte ¢ 1% character. The
last character's high bit is st to one as an end of string
delimiter. If there are no characters £o5llowing the
"copy byte + 1% character then the byte following <the add
byte contains PFH (vhich <translates to an ASCII delete).
The wvordd ID byte contains the wordd's ID number. This is
used wvhen decoding records. Pigure 4.6 shows how <the DB
entries for "PORGET" and "PFORTH" would appear if they were
consecutive entries and "PORGET"™ was +the first "P wordd.”
Polloving the last uniqua character is a 1linked list of
field ID numbers with pointers to records containing the
field associated with its corresponding field 1ID. These
field numbers and pointers are used in retrieval operations.
Records are retrieved by specifying field names and uvords.
Obviously punctuation cannot be us2d for retrieval since
only wordds are stored in the DB dictionary.

Pigure 4.7 shows howv <the dictionary is
traversed to find the desired vwordd. Uwords are reassembled
in the PAD by making the changes indicated by the copy byte,
add byte, and unique characters as the 1list is traversed.
That is, vhen the DB dictionary link2d list is entered, the
first wordd in the list is copied out into the PAD. If this
is the not target wordd, then the second «ntry in ¢the linked
list is moved to. Using the information in the copy byte,
the add byte, and the unigue charactars, the second wordd in
the list is constructed. In moving froam "PORGET"™ to "PORTH"
as shovn in Pigure 4.6, "PORGET"™ wdould be written into the
PAD as the first wordd in the 1linked list of "P wvordds."

51

— O P Y U U U U O - - - - - - -

————va

ANl JuEm aume e eman el e A S

Cedy Agg orod let Flela| Recora
90 dyte Link byte unfque Crerecters 0 oy sotnter
Typfcal 08 Dictionary Entry
rasn(F)
.
]
oM o o FOR“T Voraa ist Flela| Record
i] 10 pointer
o] his) painter
®FORGET®™ & "FORTH™ as 08 Dfctionary Entries
Pigure 4.6 Structure of a DB Dictionary Entry.

52

-~

Y P |

When the search continued past "FORFET" because it was not
the target wordd, the £first three 1letters in the PAD would
be left because the copy byte of the second entry 1is 3.
Then 13 would be added to the fourth letter (G) because that
is the contents of the add byte. This would change the
fourth letter from a "G" to a "T." Then the fifth letter,
and any subsequent ones, would be replaced by the the unigue
characters (in <this case "T" would be overwrititen with an
"g*) . At this point the PAD contains the wordd "FORTH."™

Once a wordd has been placed into the
dictionary, its first physical record is never returned to
the system to be reallocatad. If all instances of a wordd
are removed from the database, the high bit of the copy byte
is set to one. Subsequent searches of the dictionary will
not "see" a wordd if its copy byte contains a negative
nuaber (tvo's complement). Because the dictionary is a
linked 1ist, <this memory may be reused in the same list by
reattaching it at a different point in the list. When the
first record is reused, ¢*he new worid placed in it uses the
ID number assigned to the first wordd to use the record.
This is done to make ID assignment easier and to stave off
the possibility of running out of ID numbersS. Physical
records other than the first may be returned to the systea
vhen a wordd is deleted.

In segments acgquired by <the system ¢o
accommodate database expansion, only 15 physical records are
used for the database. Tha first rezord (record 0) contains
adainistrative information such as 2 record allocation map
for the segment.

Asse that, even 1in an _aggregate of four
a rcis oks, the nmaxiaum number 5f uniqae vordds is not
that large

:aggbogaféaggagg numbar is 255, The statist%csf in

53

L AR e e et M et e Sl e S A L LA R —— - PPp— A -"T

{

|

A0 7 S

v—r—r—————

Physfcal Record "
[} see
(X 2] . s
]
{
Mash(n)
' '
[[]
Copy Vorag Aaa
(System Lirk cee
key) dyte 01 oyte

PO D D P D D D D @ D WP AD e = P WD D D D P - -

|

Firet "W® 08 Dfctionary Entry

- > o amv—

:;:.“. Copy vordad Aad s
xey) byte De oyte
W "N® 08 Ofctionery Entry

)

.---------------‘--c--_---.'
Copy Yorog Aca

(Systen Link .oe

xey) oyte 10 = oyte

*H® 08 entry with same ID as physical record

Pigure 4.7

DB Dictionary #ordd Look-up.

S4

p 1y

A

™

R4

T

k. Screen Segments

These segments belong t> the user for use as
FORTH screemns. A screen segment is divided into two parts.
The first physical record contains the screen's access
descriptor. The rest of the records contain the part of the
segment the user sees as a screen. A screen consists of i6
rows of 15 characters. This is wnuch smaller than the
standard PORTH screen which is 16 rows of 64 characters.
The smaller screen is better suited to the 2 row by 20
character LCD.

When the systzm is first initialized (i.e., when
the softvare is first placed on the hardware), some of the
Screen segments are used to stors system messages, as in

standard FORTH. Additionally, some screens are used to
store some of the definitions used in <the PDBMS, particu-
larly those used with the naive user interfaces. This

allows +he user to eliminate or change these definitions and
system messages as he sees fit.

55

. f.ﬁ.vj,-.ﬁ_

L.

ang

O d'—v'vrrv VPO
N

e R Y-vvvﬂ

V. IHE DEVICE DESCRIRTIOQN

At the time of this writing, the PDBMS is in the process
of being prototyped. This first prototype is not intended
to meet all of the desired characteristics of a PDBAMS. Por
exaaple, it cannot be hand-held because it is bread-boarded
and a standard keybocard is used; additionally it requires
more than one pover supply because not all of the CHNOS
components have been recei ved. What is described in this
chapter is the outline of the final prototype as it is envi-
sioned at the present tiae. Por the most part, this is a
description of the PDBMS as it would appear to the user.

A. THE HARDWARE

Prom the user's point of view, the hardware consists of
four major cosponents: 1) the enclosure, 2) the display, 3)
the keyboard, and 4) the electronics inside. These aspects
involve how the systeam physically appears to the user, not
hov he perceives it to work.

1. The Epclosugze

The enclosure should be as saall as possible and yet
still be useful. The major constraints upon how small the
PDBMS can be wmade are the size of <the display and <the
keyboard. The =ainimum practical size available with
currently available products is approximately 9 inches (23
ca) by 4 inches (10 ca) by 1 inch (2.5 cm). This 1s the
average size of most of the hand-held computers today, such
as those made by Panasonic, Radio Shack, and IXO (6 and 7).
These systaems toend to waigh around 14 ounces (400 gm).
Their size seemas <to be the smallest practical one in order

56

L Tl

P

v L BN e s e am e S o e e

LR SRR A0 B ¢ ;' PREREA]

to keep the keys far enough apart to minimize the chances of
hitting the wrong key or hitting two keys at onces. It is
doubtful <that the display will be shrunk; if anything,
future displays will be larger and allov smaller fonts, thus
alloving more information to be shown. Ultimately, it could
be possible for the display to dominate the front of the
PDBNS if voice input were incorporated. This would most
certainly require a large display because function keys
would probably not be used (or even 3esired) and the systea
wvould be expected <to echo all vocal input so that the user
could verify that he had besen correctly understood.

The back of <the enclosure opens to allow batteries
to be changed and E2PROM to be added in or taken out. This
last feature would not only allov the user to expand his
memory (or treat it like a floppy disk, i.e., interchange-
able secondary storage), b=t also allow the transportation
of software and data from onme PDBMS to another by a means
other than through the RS232 port. The hardware and soft-
vare of the first prototype do not include an ability to add
more EZPROM, but the required modifications are aminor.

It should be mentioned <that the current imsplementa-
tion of Keys does not gracefully support the transportation
of sealed objects from one system to another by physical
transportation. There is no wvay to guarantee that security
vould be uniformly enforced, independent of the systea in
vhich the objects are foungd, because key assignments are
local in context.

6The size_of the ke s really unimportant so 1 s
the user eels con?ortagieius:ng !hen. P Ehis, norlasi zs
¢aken to mean that the keys should not be gh;szcally uncgn-
fo tabéi to use and they should provide son ort of tactile
and audible response upon being struck.

57

e s e SN o

2. The Display

The current display is an LCD vwhich contains tvwo

rovs of 20 characters =aach. This 4is larger <than the
displays in @most of the <currently available hand-held
computers. These normally have one row of 16 to 20 charac-
ters. It wvas felt that ¢two 1lines were the aminiaua
acceptable number of lines for <the PDBHS. Tvo lines allow
user commands and responses to appear on one line and the
systea responses and proapts to appear on the other. This
allows +the user to compare his commands and responses with
the systea's. Ideally the PDBMS should have a larger
display. The largest LCD displays available at <this tinme
have four lines with 40 characters per line, howvever these
are too expensive to be compatible with cost criteria of the
PDBMS?,

3. 1Ihe Kevboard

Most of the keys should be 3/16 inch (0.5 cm) square
and protrude from the keyboard background by 1/8 inch (0.3
cm) . The keys are separated by 1/4 inch (0.6 ca). These
dimensions are used on most of the Hewlett-Packard calcula-
tors for the arithmetic Xkeys (i.e., ¢ - + X). Using then
as ar exaaple, the author found that keys were easily
differentiated froa one another, and tvo or more keys were
alaost never pushed siaul taneously. The keys should be
arranged by function with the backgroand colored differently
for the letters, nuabers, and special function keys, siailar
to vhat was done on the Quasar and Panasonic computers [6].
The on/off switch should be awvay fros the other keys and be
a sliding switch, not a push switch. This should be done to

t ly £f1 technol tl
availag e %ﬁichheisogo er : £i cieg%a‘nouec ¢ °%l ngrgseg I
googd tte:g vo:eg systen. LED and plasla displays are
fiuch less power efficient.

58

A |

B paary

WY T Y YUY VY

T k.

e ., oW T R e e Ty e T e % e T YR T e T E TR T AT T .Y, e e Y TR

help prevent the accidental switching on or orff of <the
pover.

The letter keys should be arranged in the standard
“QWERTY" format, not only because of the entrenched place in
the English speaking world [1]), but al:o because it has been
found to be more effective than previously thought relative
to some keyboards designed using human engineering princi-
ples, especially with novice users {8]. At the present only
upper-case letters are planned to be provided to <the user
for text entry. Belov is a 1list of ¢the keys and their
functioans.

a. Letter and Digit Keys

These keys act in the usual and expected
fashion; they are used to enter the ASCII representation of
the desired character. Input from these keys is handled as
it normi tly would be in any FORTH systea. The letter keys
may also be used as "function keys." When shifted, wusing
the shift key, the ASCII code for the key's lowver-case
equivalent is generated. These "illegal" characters are
treated siailarly to LaPORTH words; that is, they are inter-
preted immediately upon irput [9]. Initially the function
accomplished by these words is to place into the input
message buffer and the LCD window th3a ASCII string represen-
tation of other vords; they do not appear in the input
message buffer or on the LCD®. For example, in the database
manageaent application a shift-G causes the word GET to be
placed in the aessage buffer and tha LCD window so when the
return key is eventually pushed, WORD will find GET in the
buf fer, not shift-G. Notice that the Kkeys may perfora
different functions depending upon the current vocabulary.

N a -
tions?hggeghgle-gigpi:ye st%‘X:S;,,gg éidgg?%r colon definl

59

b. Mathematical Kays

These keys are similar to the shifted lettered
keys, however they act as input immediate words without
shifting thea. That is, they alwvays cause a search of the
current vocabulary. This was done so that the wuser can
choose to use either infix or postfix notation (infix nota-
tion is the default definition of these keys in the "naive®
calculator vocabulary). These keys include the following
five keys:

+ - x + %
C. Special FPunction Keys

These keys are the usual terainal editing keys,
and vith <the exception of the "NEXT" keys, they are not
programmable. The keys are described below.

(). Enter. This key causes a carriage return
and line-feed to be placed into the input which is reflected
upon the LCD. This causes the interpreter to begin parsing
the input.

(2. Del. This causes a control-H to be inpu*
and acts as a character deletion key. It backs up the
cursor cne position and displays a space on the LCD.

(3)« 2. This moves the cursor to the right one
character position without effecting the contents of “he LCD
window cr the message buffer,

(4) e <o This moves the cursor to the left one
character position without effecting the contents of the LCD
vindowv or the message buffer,

(5) . SsShift. This is a non-locking shift key
used vith other keys to elicit their alternate definiticns.

(6) . X2. This deletes all input froas, and
including, the curreant cursor position ¢to the end of the
line.

60

LECS JNE B ane . o it

. 1.“"!7""

_—

MEMMRAS™ GO RO

(7). NEXI* and NEXZI:. These keys are used to
scroll the display to the next line above or below, respec-
tively. In the database application, the shifted NEXT keys
are used to scroll to the next field above and below the
current field. This allows fielis to include carriage
returns and 1line-feeds so that a £field need n1aot be

constrained to one logical line on the display.

B. THE SOPTWARE

When the user initially receives the systea, he is
presented only with two functions: a calculator and a data-
base manager. He does not have direct access to ROOT. This
vas done to help prevent the user from inadvertently

destroying the system before he understands it. FPor
example, it prevents him from redefining or forgetting a
vord accidentally. The user can expand the scope of the

system gradually as he learns more abou* it until he can, if
he chooses, run it strictly in PORIH (or even redesign the
system to a great extent). This flexibility 4is gained by
using FORTH execution vectors. In the case of interfacing
vith different levels of users, thers is a diffarent version
of PIND for each level of user sophistication. So as the
user becomes more adept with the system, <the vector associ-
ated with PIND is simply wmade to point to a new, more
poverful version of PFIND's run-time code. The version
initially available to the user only searches <the liaited
calculator and database amanageaent vocabularies; the ROOT
vocabulary is not searchad. The version available to the
most sophisticated user includes a 210dified version of the
standard PORTH PIND. All PINDs have been modified to be a
little more user friendly. Instead of reporting the usual,
WIS UNDEFINED," when a word is not found, the PDBMS reports
the current vocabulary's name as well. So for example if

61

08 - Eraan

T

-

‘V‘vv- v v

rev—v

the user entered a {:} when he was using the database vocab-
ulary where it is undefinad, the system would report, "NOT
DATABASE WORD." Notice that this message may fall off the
right-hand side of the display for some words; but the firs*
word of the message should cue the user to the error and if
he <then realizes <that he has forgd>tten what the curreant
vocabulary is he can move the display to the right using the
cursor control keys.

There is no editor in the "initial" systema because all
of the needed functions are available through the keyboard
keys, making the PDBMS a full-screen editor, albeit a sgall
screen editor. There is an editor vocabulary which is
defined in the PDBMS after ROOT and ASSENBLER. This editor
is only needed once the user has bagun wvorking directly with
screens. Table S.1 shows the vocabulary structure of the
PDBMS. The concept of sealed vocabularies?®? is employed;
however notice <that some words 1link one vocabulary tempo-
rarily to o*hers. For example, SBAL causes a search of the
Key vocabulary. SEAL and ONSEAL are defined in the DB
vocabulary to be themselves (i.e., ¢they simply point ¢to
their definitions in ROOT) . This allovws them to be used by
the naive user wvithout directly accessing the root vocabu-
lary. E2PROM peramanent vocabularies (i.e., Key, file, and
virtual block) are not linked through each other or those
vocabularies defined in RANM. Thus PORGETting a definition
in RAM which precedes a file, block, or key definition will
not erase any E2PROM definitionsto,

9These are _vocab arxes which confine wor e%:ches to
theaselves, _and usua H. The PIND use 1g-PORTH
searches all parent vocabu aties o9f the current vocabu-
laries., The calculator and database vocabularies are
gg:gé%y sealed in that not even the root vocabulary is

roblemat eatuge of stapdard PORT
that ailsgg?iﬁgtiong gree:c i f nagntafaeﬁ 2 a:ne stral qﬁt
linked st- vocabularies on escr be search paths thro
the 2 te The traditional PORGET siaply deletes a 1
defin tions created after the definition to be
62

e W o

t Vecabulery
s Peinter
s Definition

- o o
o

Legend
ey

#

(
|
]
i
J

- D D AR R AE An W S en D G e D
'
]
|
!
!
!
!
!
!
’
4}
+

CALCULATOR

._----_----_------_-_--_-_-----J

L

Uner Oeftnitiom

PDBNS VYocabulary Structure.

Pigure 5.1

EROU NS s RTIN _ SR . T WA . UNURBRI _/ RS Sl T Gl U Gl

63

ke 4

LEEE e an SEED o

™ 1

1. 1Ihe calculator

Initially the calculator is entered by pushing
shift-C. This places the user int> the calculator context
whose vocabulary contains redefinitions of ¢, -, x, and + so
that they are infix operators. FIND has been modified so
that if a word 4is not found and an equal sign has been
previously interpreted, a constant is created. This allows
the user to store temporary results by creating "variables®
simply by using an undefined word. For exasmple,

1 + 3= 2

would cause "A" to be created. If "B" had not been previ-
ously defined an error condition would be raised vhen it was
not found in the dictionary. The equal sign is an input
immediate which causes "A" to be created, if need be, and
sets up an execution vector %*o cause the ENTER key to store
the top of the stack into "a.«

Because a Jderivative of PORTH is used, floating
point arithmetic is not used. The systea defaults provide
the user with a <fixed two digits behind the radix point.
Like FORTH, the user may choose any base (radix) for arith-
metic operations, within the limits of the nuamber of input
syabols available.

2. The Databage

Ini«ially the database management system is entered
by pushing shift-D. This vocabulary allows users to create
files, create records, retrieve records, update records,
delete records, and delete files. A3ditionally the user may

fo:gotten—-even t& I are not in the cur int vocabulary.
hefi_ there, 6 are ultiple vocabuy %i,es can create
angling pointers in vo abulary de nztzons.

64

L -

ey

e

B~ |

create and delete Keys, and use Ka2ys to lock records and
other Keys.

a. Keyboard Key Defini tions

When <the usar is placed 4into the database
context the NEXT keys are redefined as described before.
Besides those two keys, tha followingy shifted characters are
defined. These keys are described belovw. The word which
appears on the display and in <¢he input message buffer when
the key is pushed is shown in parentheses.

(. D (DELETE). This is wused ¢to delete a
file, record, or Key. There are three different DELETES,
one in each the DB, file, and Key vocabularies. Each delete
effects only those elements in its respective vocabulary.
The delete in the file vocabulary deletes files, <the one in
the Key vocabulary delet2s Keys, 2and the one in the DB
vocabulary deletes the current recori.

(2. P (FILE). This word changes the context
for the interpretation of %the wvorls following it in the
input stream so that the file vocabulary is searched. The
context is reverted to the DB ("calling") vocabulary when
the first word not found in the file vocabulary is encoun-
tered. The last filenam2 mentioned before the context is
switched out of the £file vocabulary becomes the '"current
file."

(3. ¢ (GET). This is used ¢to initiate a
record retrieval. Table III shows a typical record proce-
dure. Pirst the user is asked if the current file is the
one to be searched, or asked for a file if there is no
current file. Then the user is presented vith the names of
the fields of the records in the (file so the user can enter
values vhich are to be used as key attributes for retrieval.
If the user does not desicre to enter a value for a partiec-
ular field, he simply presses the ENTER key. The query in

65

i.'
|
E

e e

Table III is a request for any record in the ADDR-BK file
which contains "TABETHA" in its NAME field and "MONTEREY" or
“YA." in its CITY/ST field. Befor= actually performing a
retrieval operation, the user is asked if he still desires
to do the retrieval allowing him to abort a gquery if he has
realized that he has made 2 mistake.

TABLE III
Record Retrieval

GEI
FILE ADDR-BK?

IZs
NAME?

TABETHA
ST REET?
Senter>
CITY/ST?
HONTEREY WA.
PHONE?

<epter>

MI SC?

<epter>

GET?

1ES

1 RECORD POUND
PUSH NEBXT

(). H (HIDE). This is wused *o make a Key
vhich has been made known through a UNSEAL operation,
unknown.

66

——v—

(5. K (KEY). This wd>>rd changes <the contex+
for the interpretation o°f the words following it in the
input stream so that the Key vocabulary is searched. As
with the shift-F, the context reverts to the calling vocabu-
lary when the first word not in +*he Key vocabulary is
encountered. This word does not effect any Keys or the Key
vocabulary, it is obply used as a prefix word for MAKE and
DELETE.

(6) M (MAKE). This word, 1like DELETE %xists

in the DB, file, and K2y vocabularies. Each different
version creates a record, file, and Key respectively.
(7). N (NO). This is used as an answer to

appropriate system prompts.

(8) . P (PUT). This is analogous <to SAVE-
BUPPERS and PLUSH ir that it writes the curreat record to
secondary storage.

(9. R (BECORD). This word is included for
consistency reasons. It is used to preface DELETE and MAKE
when the user wishes to use the DB definitions of these
words. The DB DELETE and MAKE nust be prefaced by RECORD so
that there is less chance of an accijental record deletion.

(10). S (SEAL). This is used to seal a Key or

the current record. It is simply defined as:
¢ SEAL ROOT SEAL ;

This allows the user access to the root werd SEAL wvwithou*

directly accessing the root vocabulary.

(11) . U (UNSEAL). This word is used to unseal
all objects sealed with one or more Keys. It, like SEAL, is
siaply defined in teras of the root word UNSEAL.

(12) . ¥ (XES). This is used as an answer ¢o

appropriate systea proampts.

67

M e e et o i e B i s s+ Aot et A e et

be Pile Creation

Files are created simply by using the words FILE
and MAKE. Upon entering shift-F (or PILE) and shift-M (or
MAKE), the user needs only to follow the system's prompts.
Table IV shows the file creation sequence. The user's input

is underscored. The user always gets an additional field
b called "miscellaneous" adied to the bottoa of all records.
This is included because it was found that people's personal
data does not normally fit a uniformly structured record.

C. Pile Deletion

oy
. il

Pile deletion is simply 2ffected by the sequence
shown in Table V. File deletion is not a trivial mat*er
since the E2PROM is organized as a heap with physical

haAu an ot aun 4

records containing a aixture of sealed Keys, DB dictionary
entries, and records from various files. Pirst of all, a
] user cannot delete a file unless he has unsealed all of the
(| records in it, so DELETE aust make cne pass of all the
records in the file to ensure that they are all unsealed.
If all of the records are unsealed, <then a second pass is
4 made of the records reallocating all of the physical records
back to the system (i.e., setting thair corresponding bit to

zero in the record bit map) . Additionally, on this pass the
first byte of each physical recordl is set ¢to 80H (the
systea's Key) while the second byte is set to FFH (the null
Key) . Then the DB dictionary nmust be searched for all
references to the deleted field numbers, and these must be

reaoved. When a field reference is removed from a wordd's
list of field 1IDs, the hole created by this deletion is
filled by aoving the 1last entry on the 1list up to the
vacated spot, Physical records vacated by this operatioen
are returned to the systenm. Pinally the file's vocabulary
and its field entries can be forgotten. Obviously £ile
deletion is a lengthy and complicated process.

[.

68

P YT

T

s

R - i

YTV TRy

L RERA. N e e e b aun e o AN o

TABLE IV
Pile and Key Creation

Pile Creation

EILE HAKE
NAME?
ADDR-BK

PLD 1 NAME?
HANE

PLD 2 NANE?
SIREET

PLD 3 NAME?

CIIX/SI
PLD 4 NAME?

RHONE
PLD 5 NAME?

Septer>
PLD 5 MISC 0K

Key Creation

EEY UARE SECREI
oK

Table V.
WSECRET."

tion of "SECRET"

Key Creation

Creation of a Key is very siaple,

The example shows the
All that is required to create a Key is the addi-
into the Key dictionary as
initializing it to the next available Key ID number.

69

creation of a

as shown in
key named

a constant and

v
"
[

.

.

i

[

/

AR S I S ot oo o
R

I varrr'vv-
. PR 13 P .<‘ d

N

™

Ty
. . -
L -

.

AR~ o

) AB0E B s SN e v a3

M Y e et e T Ty TR T e T e T e e TR TR oy e e o ERE A R) TwTY T v iUl rr—v—rvv*.ﬁ-v*v-}

TABLE V
Pile, Key, and Record Deletion

Pile Deletion

EILE ADDR-DE DELELE
DELETE ADDR-BK?

1E5
DELETED OK

Key Deletion

KEY 3ECRET DELEIE
DELETE SECRET?

IES
DELETED OK

Record Deletion

RECORD DELEIE
DELETE RECORD?

IES
DELETED OK

€. Key Deletion

Key deletion is accomplished in the same manner
by which files are deleted, as shown in Table V. Also like
file deletion, the mechanics of Key deletion are not the
equivalent to a straightforwvard PORGET. Before a Key can be
deleted from the dictionary, all occurrences 5f the key in
the various access descriptors aust be loccated and changed
to reflect the Key's deletion. This entails searching the
access descriptor of each screen, record and sealed Key and

70

converting the deleted Key's ID to FEH (the deleted Key ID).
After this is done the Key is deleted from the dictionary.
A sealed Key's physical re2cord is returned to the systen,
after setting the first byte to 80H (the system Key) and the
second byte to PFH (the null Key).

f. Record Creation

To the user record creation dialogue is siailar
to the one associated with file creation. What is involved
is collecting the desired d1ata, encoiing itt?, finding phys-
ical records to hold the logical record, and finally linking
tha record 3into the parent file'’s linked list of records.
Currently the linked 1lists of records are maintained in
chronological order (i.e., as a circular queue). This may
be frustrating in some applications where <the user would
like to peruse the database in some specified order. Por
exaaple, it is 1ot possible to view the records of an
address book alphabetically by surname, unless they were
originally entered in that order. Because of the unfor-
mat ted nature of the fields, it is very difficult to sort a
file by key attributes.

It would not be too difficult to allow the user
to specify a record ordering other than chronological. This
could be done by alloving the user to flag a wordd in the
record as the sort-key-value (for example the last word in a
tecord starting with the character "a%). Then when the
record was PUT into the database, it would be inserted into
the file's linked list alphabetically relative to the other
"3 vordds* in the file's other records. SO the user could

11This jncludes conve ng the uwords to puanctuatiop and
ggrgis, ana then the aﬁﬁition of the uordgs gnto tge DB
ctionary.

n

PO S WY —e oA o a

FRuien fun ut Aol S omueae
e e P | r

A P> §

L e o 2
PR An B

IR [- JolELEEicaG S mararragy

T
S .

maintain the file sortad by surname by prefacing all
surnames vith a "ani12,

TABLE VI
Record Creation

BECOBD HAKE
NAME?

JOHN DOE
STREET?

3249 1378 St NW
CITY/ST?
RORILAND, ORE.
PHONE?

Septer>

NI SC?

Septer>

oK

Table VI shows a typical record creation
sequence, Notice that no phone nuaber was given; a null
entry is signalled by hitting the ENTER key. Also notice
that there is an implicit "current £file." This file is the
last one referred to after the last use of PILE; had no file
been explicitly referenced before a record creation was
atteapted, the PDBMS would have requested a file naae. If
the file wvas not found, the user would have been asked if he
desired to create a file or abort the record creation.

l'rhis naK not appeal to many users, but _it would not
necessar ay to _appear in the name field, The
"a-snrnane could be placed in the "miscellaneous" field.

72

—prpp——

P

MR — S ™ B

S na

Ya

d. Record Deletion

Record deletion is requested by the user in the
same fashion as file and key deletion. Record deletion
involves first removing the record from the file's linked
list by making the two records adjacent <to the current
record point to each other. These links are found in the
current record's previous and next 1link bytes (see Pigure
4.5). Then all of the wordd references to the record in the
DB dictionary aust be delated. Finally the physical records
are returned to the system after setting the first byte to
80H and the second to PPH.

h. Update

Only records maay be updated; files and keys
cannot. Records are simply updated by GETting them, modi-
fying thea using the cursor control keys, and then PUTting
thea back. Like FORTH, once a change has been made to a
record, it is marked as b2ing wupdated, wvhether or not *he
change is later undone in the same editing session. 'Once a
record has been marked as updated and it is PUT, the updated
record is added as a new record, and <*he old record is
deleted. This is not quite as drastic as it may sound. The
old record is used as a teamaplate for encoding the new
record. Wordds which are unchanged can be copied from the
0ld record directly into the new racord. The old record
also contains all of the pointers into the DB dictionary
vhere new virtual addresses must be substituted, so the
dictionary must be searched only when a new wordd is added.
Record update is actually a record creation and deletion
operation.

It could be possible to allow file editing
(i.e., the addition and deletion of fields) by perforaing
the same *ype of operations as are employed in record update

73

............

(i.e., creating a nev file, transferring the appropriate
g data froa the 0l1d file intd the nev file, and thea deleting
L| . the 0ld file). However, this was considered too coamplicated
i and slow to justify its inclusion for what would probably be
a rare event. Besides, by always including a "miscellaneous
5 field" in all records, it was felt that this would probab}y
F not be a very necessary operation.

p

T

T -

——

74

Lam e A0 S0 & 4

A

- T . a7

P A e G A e e e A A A S A S

VI. SISTE:. 3ECURITY DESIGN

As stated earlier, security is iaportant in a PDBNS
because of the personal nature of the information it may
contain. Hovever, the type of security afforded in this
design is probably better suited for a larger systea.
Probably all that is required for such a system as the PDBNS
is a sismple mechanisa which employs one Key or password.
This allows <the user to hide anything he desires at one
level of security (i.e., one either has access %0 all of the
data or has access to only a subset of the data). The PDBNS
uses a much more elaborat2 systea. _This was done to test
two things: the feasibility of securing FORTH, and the
feasibility of implementing a security mechanism siailar to
the one described in refarence [10]. PORTH was chosen as
the language to impleament the PDBMS with no firsthand knowl-
edge of <the 1language. Because it is an interpreted
language, it wvas felt that there wdould be no probleams with
securing the systena. Hovever, after receiving the PORTH
documentation and software aany doubts wvere raised about
vhether the language could be secured.

At first one thing wvhich seemed essential to securing
the PDBMS was the restriction of the user's ability to use
asseably language. If the user can write words in asseably
language using physical addresses and ports (the only way to
write such words on the NSC800 since it does not support
segmentation and privileged modes) there is alaost no limit
to vhat he can do. All standard PORTHs are very close to
the hardvare and allov wvords to be wvwritten in asseably
language, besides PORTH. As a matter of fact, it is so
close to the machine, that in 8080 £ig-FPORTH and FORTH-79,
it 4is impossible to prevent the prograammer froam writing

75

R e S il e e s = AR Tt et Sl et Jant g

asseably language defined words without chaaging PORTH %o
such an extent that it is no longer the same language. In
these two systeas, the words which are used to specify code
definitions (;CODEB, CODE, BND-CODEB, and {(;S}) are all high-
level words (i.e., words written in PORTH as contrasted to
lov-level words vhich are written in asseably language), as
is the assembler. As far as the author can deteraine, there
is no 1low-level word which can be "hidden" from the user
vithout having a detrimental effect and which is required
for entering assembly language defined words.

The word "hidden" is enclosed in quotes in the previous
paragraph because no word can be hiiden from a user in his
address space. "Hidden" means that the user neither knows
of the hidden word's existence or doesn't knov where to find
its definition, nor can hs execute it directly. A word in
PORTH which can be located can be exacuted even if it is not
in the PORTH linked list word dictionary (one simply puts
the address of the first executable byte onto the parameter
stack and evokes BXECUTE). If a user is to be alloved to
prograa in PORTH, he maust be alloved to access words in the
ROOT dictionary, and in order to access words, their naames
must appear in the dictionary since PORTH searches the
dictionary by nasme. This makes it very easy for a user to
traverse the dictionary and look at its contents and at the
locaticen of words. It would not b2 hard, +hough probably
teaious, to find a word not included in the dictionary by
checking for unaccounted gaps between words in the linked
list or £finding a reference to a code field address of a
word which does not appear in <the dictionary. If one were
to seriously consider hiding words, the best way to do this
would be ¢to remove all of the healers (the name and link
fields) froa all of the dictionary antries. Such a systea
could not be extended because no words in the dictionary
could be found (since the name and link fields are necessary

76

it

T '." v v

YR

v Rahatahsn sl ot 4 Tv—vwf't,—

—y

to search for a word). If the PDBMS was to be secured there
had to be another method which eithar prevented the use of
asseably language or workad regardless of the fact that the
user could use assembly language.

In the PDBMS, FORTH could possibly have been secured
entirely by using software and still allowed the user to
prograa in PORTH, hovever it would have undoubtedly been a
very limited subset of the language. Such a systea would
have not needed EPROM; instead a coll boot could have loaded
the systea in froa E2PRON. Verifying such a systea would
have surely been a problea. Instaad the PDBMS relies on
both bardvare and software to enforce systeam security.

A. HARDWARE SECURITY MEASURES

In multi-user systeas hardvare support of security is
essential; in truly secure systems it aust be verified that
there are parts of the systea <that no one but systea adain-
istrators can access. In the PDBMS the hardware and
sof tware enforce security to such an extent that even the
owner of the systea cannot access parts of the systeam at
alli3, This is desirable because it not only prevents other
persons who are not the owner of the PDBMS froa coaproamising
or destroying the systeam, but it als> prevents the user fros
“terainally crashing® the systeam. Many of the systea's boot
parameters are stored in EPROM and E2PROM. If these were
lost, the system could not be bootad up.

It is the interaction of the EPROM and the "smar%t ports"
vhich is the hardware portion of ¢the system's security.
Siaply, <the ports which control access *o virtual memory,
the keyboard, and the RS232 port only accept instructionms

13The P aus has not beeg sr ven gorrect and secyre in
the sense o he vays iscr be n,referepces £11 and 12
ngevor, the au*hor belleves that it can be made secure afd
gorously proven to be so.

77

ik

K iaamss

R e S 4

executing from EPROM, as discussed in Chapter IV. Because
EPROM is read-only, <the user is forced to use procedures in
it to access these external devices. Thus if the procedures
in EPROM can be verified that they are not only correct, but
they are also unsubvertable, <then the PDBMS can probably be
made securels,

B. SOPFTWARE SECURITY HEASURES

The hardware in itself does not guarantae a secure
system; there aust be some verified softvare vhich operates
it. There are three different aspects of +the software in
the PDBMS vwhich are used to provide security. A fourth
aspect is mentioned here which is related to security but is
not involved in systeam security per se. The first three
items are: straight-through code, wmaintenance of systenm
parameters and tables in E2PROM, and Keys. Th2 fourth itea
is the FORTH concept of exacution vectors.

1. straight-thgough Code

Contrary to PORTH programminy style, words vhich are
involved with port access maust be low-level and indivisible.
This means that these wvords aust not be defined in terms of
other words, i.e., they cannot be colon definitions, they
aust be code definitioms. FPor exaaple, it seems obvious
that one would 1like to write the f>llowing low-level words
for use in other systea aanageaent words because they would
be very comaonly used:

1) correc* rocedure is one that doas on l uhat t is
desigred z n 5 i
Onsa vertabilitl s a stronge: copditio thag io:rectness n
t seans even co>@abinations 3 ules of correct
ode and gort ons of mod :s cannot be caused to be aade to
nteract incorrectly. concern in the PDBMS since
tgg user can read and execute the systea's source aachine
code.

78

T TTa

PN

E2pROM_ON {(Turns E2PRON power On)
E2PROM_WRT_ON (Turns E2PROM write power on)
WRT_E2PRON (Initiates an E2PROM write)
B2PROM_WRT_OFP (Turns E2PROM write power off)
E2PROM_OFF { Turns E2PROM power off)

However, as mentioned before, if a wo>rd exists in the user's
address space, he can find it and 2xecute it. This means
the user could find E2PROM_ON and B2PROM_WRT_ON, and execute
themn from EPROANM. Then using his own asseably 1language
routines, he could manipulate the contents of the E2PRON.
The only way to prevent this is to create a aminimum set of
virtual memory management words which, once execution of any
one of them begins, nevar branches out of <the word or
returns to the inner interpreter without first <turniang off
access to the ports. Also these words should be written so
that if the user jumps into the center of their code, they
are still correct.

The first requirzaent is fairly easy to achieve
because these words are resident in EPRONM, thus because they
cannot be altered, if a user jumps to, or into, <them it can
be assured that he cannot effect the execution of the vords.
The second requirement is auch more problematic. Satisfying
this wmeans that <the actions of these code sequences can
maintain system security ragardless >f the actions performed
before and after their execution, and regardless of whether
the entire sequence is executed (i.2., the user jumps into
the middle of a code sequence). Por example, the user must
not be able to use the code of one word (vhether it is the
entire code sequence or a part of it) to set up the segment
register to point to the Key dictionary, and then by using
another wvord, retrieve the Key dictionary.

79

T T T T N g e o

Y
~,

T

S W W e T v ¢ N T RN TR N TR T T T T W T T g e
N Rl A - LR A e S ARl S it i SR i Lliene 4 T T

2. Majntenapce of System Papameters and Tables in
E2PROM

By controlling access to E2PROM it is possible to
use parts of it to store information which <the user should
not have access to. Chapter IV discusses the information
which is stored out in E2PROM which is not accessible to the
user. The 1locations of the paramaters and beginnings of
these tables are static so that they may be referred ¢to
directly by using their segment number and E2PROM addresses
(FFPOOH through PPPPH) . These refersnces are found in EPROM
wvhere they are visible to the user. The insurance that the
user cannot directly access these segments must be incorpo-
rated into <the design of the straight-+hrough code. The
code must be written so that when control is passed from the
word to the inner interpreter, the user is left with no more
information about the <tables and parameters than he is
authorized access to. Any routines which do system table
and parameter maintenance are designed so <+hat they work
directly on the E2PROM and never bring the contents of these
segments into RaN. This makes it easier ¢o ensure the
security of systea segments.

The above is not entirely tru2 of the PDBMS. During
retrieval operations, virtual addresses are brought into the
data buffers. Thus the usar can gain some inforaation about
the mnmaintenance of the system's segments by duamping ¢the
contents of these buffers. This information is kept in RAM
because it is a "write-intensive" osperation. Additionally
it must be left in the buffers after the systea is finished
with processing the guery because the wvirtual addresses must
be used to £fipd the records which satisfy <the query condi-
tions. The current record's virtual address is needed so
that if it is updated the location of the o0ld record can be
found and deleted. Thus the user can gain access to the

80

—wy

ey

LAl A Ao ok L o 2

virtual addresses ¢f records to which he is authorized.
Allowing the user access to the virtual addresses of all of
the records which satisfy a2 query gives him some information
from which he can make inferences about the allocation of
physical records, including those to which he is not author-
ized access. How much information can be gained through
inference seeas to be limited by the fact that the segaments
in which these records occur contain not only records (which
can use varying numbers of physical records), but sealed
Keys and DB dictionary 2a2ntries (vhich also use varying
nunbers of physical records). Additionally if any deletiomns
or updates ever occurred, the physical records may no longer
be allocated in a sequential and chronological manner. Thus
in a mature (i.e., one which has processed a number of Key
and record additions and deletions) system, it is question-
able that much meaningful inference can be done. O0f course,
the problem can be avoided entirely by keeping all of these
virtual addresses in E2PROM at the expense of system speed
and possible E2PROM "burn-oat."

3. EKeys

The proper implementation o¢f Keys relies heavily
upon the preceding hardware and software base. Keys are
very simple——nothing is fetched from E2PROM unless <*he
proper Key (s) has been UNSEALed (or made known). The opera-
tions associated with SEAL and UNSEAL effect +the Key
dictionary but have no effect upoa sealed objects. As
mentioned earlier, Keys are maintained in a dictionary as
constants. When a Key is UNSEALed, the high bit of its
character count byte is set to one. When a data object
fetch is requested, the ob ject's access descriptor field is
"computed”® to see if the ra2guisite Keys have bean previcusly
made known.

81

UL e LT R LT WY i h o A e —

The access descriptor fiells are 1limited to the

first physical record for screens (15 Keys), 15 Keys for a
sealed Key (one physical racord less one byte for the sealed
Key's ID), and no limit for database record (since they are
> permitted to cross physical record boundaries). However for
consis+ency, from the user's point 52f view, 15 Keys is the
.E liait for all system objects. The Keys may be "anded" and
"ored" with each other to form coaplicated access mecha-
nisas. This may be further extenied by adding layers of

.rd'-*r- e e A
.

sealed Keys. For example if access to the current record

E‘ required the Keys "“CONPIDENTIAL"™ and "ACCESS," or the Keys
{ “SECRET" and "ACCESS," the current racord could be sealed as
' follovws:

& KEY CONFIDENTIAL ACCESS & SECRET & | RECORD SEAL

i or

KEY CONFIDENTIAL SECRET | ACCESS & RECORD SEAL

where "&" is a logical "and"™ and "{" is a logical "or." If
CONFIDENTIAL's ID was one, SECRET's two, and ACCESS's three,
and the second example above had been used ¢to seal ‘he
record, then the record would have four key bytes which
would contain:

o i’vrr’v“v

014 024 83H PFH

Notice that <the high bit of ACCESS's ID wvas set *o one.
This signifies that it is to be "anded." A zero high bit
signifies *he Key is to be "ored." Unigque "access pa+ths"
are described in both the SBEAL process and ¢the access
:‘ descriptor because <they are specifi=d using reverse Polish
notation.

82

- -

—-———

-

LaES s 4

=

When an at*empted fatch of a record is made, the
fetch algorithm starts by setting a fetch flag to true (the
value one). Then it simply reads each Key ID from the
access descriptor and searches the Key dictionary to see if
the Key is knovwn (i.e., the high bit_of its character count
is set to one). If the Key is known, <the search returns a
one, otherwise a zero. The result >f the search is "anded"
or "ored" with the fetch flag accoriing to the high bit of
the byte in the access da2scriptor. dhen the null Key is
found in the access descriptor, the value of the fetch flag
determires whether the object is sealed or ursealed.

Since the Key dictionary entries are maintained as a
FORTH dictiopary and PORTH dictionaries are searched by
name, it may seem that searching the dictionary using the
Key's ID may be difficult. It is, in fact, faster than
searching by name. This is because 5f the structure of the
dictionary entries which allov the Key's value to be
retrieved easily because it is located in <the byte immedi-
ately following the CPA. Searching by name is slover
because it involves string comparisons.

At the root of the Key dictionary (i.e., that entry
whose link is equal to 00J08H) is the definition of MAKE.
Below MAKE are all of the other colon definitions in the Key
vocabulary. After the last colon definition is the defini-
tion of the system Key. This 4is a constant like the other
Keys but its value is 80H and its coun*t byte contains a 00H.
This means *that its name's length 1is zero, and thus it has
no name and cannot be £found by a name search of the
dictionary. Because it cannot be found, it can never be
UNSEAled or made known, so the high bit of its character
count will always remain zero. Below the system Key are %he
definitions of the null Key and tae deleted Key. These
Keys' values are PPH and FEH respectively and <their char-
acter count bytes are equal to 80H. This means <hat they

a3

Lty aont a5

L Gt

T

e aauecs o e oo b SR Lo e S g

also have no name and they alvays remain UNSEALed or known.
Because these three Keys' values are jreater than 127, they
are always "anded" into any Key ID 1list in which they
appear.

Changing a deleted Key's ID number wvherever it
occurs in an access descriptor 1list results in a "sensible"
condition, That is, all other Keys are still required in
their same 1logical relationship except that Key (or rela-
tion) which preceded the deleted Key which now <takes the
place of the relation between itself and the deleted Key. A
major problem with deleting a Key is that the user may not
realize the data objects which he 1is effecting or how he is
effecting thea. This is an unresolved problem ir the PDBAS
and it is more coamplicated than it appears on the surface.

Finally, there is one last important operation which
concerns maintenance of the Key dictionary: making Keys
unknown. The user can aake Keys unknown on an individual
basis by using HIDE. For a2xanmple,

KEY SECRET HIDE

makes YSECRET" unknown 2and seals any objects which are
sealed with SECRET. When2ver an non-maskable interrupt is
generated, the virtual memory manager makes all Keys vhose
character count is greater than 80H unknown.

4. Execytion Yectors

Execution vectors are used in the PDBNS to allow the
user to interact with only that part of the systea which he
understands. However, they can be wused to provide systea
security to an extent. Siaply, if a user does not know how
to change a vector's value (or a collection of vectors) or
vhat value ¢to change it to, ¢the situation is similar to
needing a password to access a more powerful system. At the

84

R e e St A T %

lowest level it is easy to prevent a user from using more of
the system than is desired. 1If the user is constrained to a
vocabulary which does not contain words which would allow
him the make colon definitions (e.g., {:}) or access nmemory
directly (e.g9., {1}, (@}, etc.) the inner working of the
system can be hidder from hinm. Making a user more privi-
leged simply means giving him the name of 2 word which
changes the values of the execution vectors (of course *his
word cannot appear in a listing of the vocabulary). As the
system to which the user gains access becomes more powerful,
it becomes progressively harder to provide system security
by using execution vectors without relying upon hardware.

85

ARRENDIX A
THE LANGUAGE PORTH

A good description of the concepts upon which PORTH is
based may be found in reference (13]. PORTH is a stack-
oriented, threaded, interpretive language. It is noted for
its compact size and fast execution (compared to other
interpreted languages such as BASIC). The 8080 fig-FORTH
nmodel (versiom 1.3) occupies less than 9K bytes of memory
(vhich includes the first page of memory occupied by CP/N).
Residing in that 9K is the PORTH interpreter, coapiler,
dictionary, and a line eiitor. There are ¢two "generic"
PORTHs. The older version is usually referred to as
"fig-FORTH," the never version is ausually referred to as
“PORTH-79." PORTH-79 was designed to be a standard wvhich
establishes <the ainimum requirements of the 1language.
specifically reference {2] states that the purpose of
PORTH-79 is

eee to allow transportability of standard PORTH prograss
in source fora anong standard FORTH systems. A standard
p§g gal shall execute egjuivalently on all standard PORTH
s Bs.

The bibliography contains a list o5f sources used by the
author while learning PORTH. Anyone vho seriously desires
to understand the language should have at least some of
these books and pamphlets.

A, WORDS

The basic unit of the language is a "word."™ Words can
be "colown definitions" (analogous %to functions and proce-
dures in other languages), variables, and constants. New

86

Y

v

v Ty~ —————

W e T

e

vords are defined in terms of previously defired words,
making the language extensible. Defined words are kept in a
linked 1list called the "dictionary." The dictionary is
maintained as a stack (Pirst-In-Pirst-Out or PIFO) so that

the newvest words are searched first. Thus previously
defined words can be redz2fiped. Dictibnary entries are
pruned by using the wvord PORGET. When a word is

“forgotten," all words defined after it are also forgotten.
Rather than a straight linked list, ¢the dictionary can be
extended in a tree structure where branches denote different
contexts. Table VII is a list of the PORTH-79 required
words. The words in lower-case are dictionary entries for
the run-time code for the corresponding compiling word.

B. SYSTEN DATA STRUCTURES

Fiqure A.1 depicts the standard PORTH memory organiza-
tion. The user dictionary grows up towards high @memory
vhile the parameter stack grows down towards the dictionary.
The unused portion of memad>ry separating the two is called
the pad. The beginning of the pad moves up in memory with
the dictionary pointer (DP). It is usually located U4H
bytes in front of the DP. Likevise, the input message
buf fer grovs up in memory according o the size of the input
message while <¢the returan stack grovws down towards the
message buffer.

The parameter stack is used for aathematical data manip-
ulations and parameter passing. The data on the stack is
operated upon using reverse Polish (or postfix) anotation,
similar ¢to Hevlett-Packard calculators. The return stack is
used by PORTH for storing <the interpreter pointer (the
address of the next higher context, i.e., the calling word).
The pad is used primarily for string manipulationms. System
variables are those variables maintained and used by FORTH

87

. (=
' o
- -~
' @ 0o 515
' (o] - = B (5] 103
(1] n o ged . | M-
(&) P ()] o HeMEDR ® - g0y
o oy I ot na»HE UA 0, a1t
. n N OMIZE B W 1 O Eywiog = GO
NoM MO PEDOHMHOAOR © oOMOMO=NA0 O ORBlet)
O 1 ONALLU VALK IRZEXEXGD > - DO NET-1=T. 1=
. »
, ® [72]
b S N
§ o
o) » -
‘ “ a ol (2] 2 (2]
. (o) m (2] el g U] [Lnd
V o= 0]} o. rel. & ~ (¥] 5] o ==
L o] o N OB+ -ty ctord J T T-T] Y] (e il- ™
) - 7] o BS0H HXOULI O = o 06 ST D 3 VRO
. - e J Vv ~e ORINGS @PIO.C 63 7] ODHEIH o = s RAMOO=
> M = 8 +O™ OV LAAKNHEIEAMY D % UMD L T-L I
]
, @
. a2 !
. < ™ ~ o) v
) r b--3
: o0 M o] - O -
~ = o) X] &]
' 1 gM AD o u U & g g
; m (= it WY oMo (=120 W RIRY 2 Y
. H (o] DUO O ObflIo« o oG Qasdi-ife =IAIVIEIBI
_ -Hle QAIEVOMUOO>EVO A IO DD HogiHmm
y N & ¢+ \" Ve aLAUTRHHBO HND M " | AMOMIXO% g ORI
e
i (-] o) o3
: o] B4 & =«
: — ~ w o
5 3 8 Eafna
. -] v LU) e - 3]
' o o 0 ol ot S S10] 18] o SSETE
¢ Qrd n A g2 - VD HARI O ARNT«Y
, AITXBOS Ot -HOE® O\ e O WBID A,] OmBTO
¢ \ONAM VAT IH~HEOK ND » » v o ORTION + LOOHND>

88

Revice Words

BUP FER
SCR

]

Y e

L Masoocae~ wens

™ i

i ae aae a4 0 v"v—v.v P
. A ARASLEEA A

Low Memory

Pre-Compilea FORTH

Systea varisnles

€lective Definttione

User Definftiaone

‘

Ped
'
v

¢

Paresster Stack

Inout Message Quffer

'
'

Return Steck

Veer verfedles

High Memory

Slock Buffers

Pigure A.1

Standard PORTH Hemory Map.

89

A B el et e e A A ok e & il o a e

Ty

and not directly accessible to the programmer. User
variables are declared, maintained and used by the systea,
but are directly accessible to the programmer. Examples of
system variables are cold boot parameters and CP/M disk
interface parameters vwhile examples of user variables are
the dictionary pointer the current radix (called BASE), and
the current execution state (called STATE).

The nuaber of block buffers is dependent upon the amount
of physical memory available. Standard PORTH blocks are 1K
bytes in size and are stored in sacondary storage, thas
giving FPORTH what its users call virtual memory. FORTH
automatically allocates buffers as they are needed according
to which buffers have not been allocated yet, the age of the
contents of occupied buffers, anl whether any buffers
contain updated dJdata. Blocks containing PORTH "prograas"
are commonly referred to as "scraens" because they are
formatted for CRT display; i.e., 16 lines of 64 characters.

C. THE HECHANICS OF PORTH

There are 1less than 70 asseably routires 4in PORTH-73,
most of which are 1less than 20 instructiomns 1long. When
FORTH words are interpreted, it is <these routines which
ultimately are executed, except in the case of user code

defined words. All words in FORTH <contain a code field
address (CFA) vhich is a pointer to an asseably language
routine which defines <+he word's run-time behavior. A

constant?!s CPA points to comstant vhich is an assembly
language routine which places the contents of the two bytes
following the CPA on to the parameter stack. A code defined
vord's CFA simply points to> <the byta following the CPA—the
beginning of the word's code definition.

90

V"

r+.-ﬁ, rr——

The CFA of a colon dafinition points to colon. See
Figure A.2 for the structure of a colon definition in the
PDBMS. This routine has different actions, depending upon
the specific version of PORTH (i.e., vhether the systeam
increments the interpreter pointer before executing a word,
or after). In general though, colon pushes +the current
value of the interpreter pointer (which points to the
current word being executed in the post-incrementing
systeas) onto the return stack and then sets the interpreter
pointer ‘equal to the contents of ¢the first two bytes
following the current word's CPA. These two bytes contain a
pointer to the CPA of the first word in the currently
executing word's parameter field address (PFA). Thus the
execution of a word describes an inorder traversal of a ¢tree
of FORTH words used to define a word and all words used in
those definitions, etc. lLeaves on <+this tree are code
defined words, constants, variables, user variables, and
other data types; nodes are colon 3definitionms.

Complementing colon is seaicolon. This is the runtime
code of (3} which is the 1last word in every colon Jefini-
tion. What semicolon does is siaply pop the return stack
and sets the interpreter pointer 2qual to the popped value.
This causes execution to move one layer .igher in the tree
described above. The topmost word in the tree is QUIT,
vhich is an infinite 1loop. So when the interpreter
coapletes the execution or compilatiosn of a word, execution
returns to QUIT which loops waiting for more input.

The heart of FORTH is the inner interpreter. In the
8080, 280, and NsSC800 all this short code routine doces is
take the interpreter pointer and push it into the program
counter. This technique of passiny coatrol froa word to
vord makes PORTH almost incomprehensible until <the entire
sys*ea is entirely understood. Because PORTH uses almost 10
subroutine calls and Juaps, flow of control 1is not

91

[R0 4

7~ A S

~ Ty
. . Il

T

P

Leot Cher

’

First vord In Definitfon

’
Parameter
Flela
'

Last vorg In Definftion

Pigure A.2

92

oxt Dictionery Entry’s

Name Fleld Link Flela
' ’
— — :
Firet Owr :
Count tyte :
]
[}
LiInk Flelg b e, — e ————— H
Code Flelgq [~~~ —=—=====- > colon

----- == FA of 1ot wora

Structure of a PDBHNS Colon Definition.

f
),
'

immediately apparent. In 8080 £fig-PORTH (version 1.3)
almost the entire FORTH systea past the first 1K bytes
consists of "DB" and "DW"™ instructionsls, Like LISP, most
of PORTH consists of data structures which can be wused as
data or executable code.

1SThe "88“ (Define Byte) and "DW" (gef‘ne W#ord) instryec-
tions are)80 asseably language psue o-instructions which
are used to insert data into code ar=as. Por 2xaample the
POREH pessage "QK" (folloved by a carrage return and lipe
feed) . is nseited into the source code of FORTH by using the
“DB% instruction as follows.

DB ‘oK' ,0DH,0AH

93

-

e rr*'vv'

DI |

ARRENDIX B
STUDY STATISTICS

A. BACKGROUND

In order to understand what maight be involved in a
Personal Database Maragement Systea, four address books were
studied in detail. The results of this study served as a
basis for much of the design of the PDBNMS. It should be
pointed out that the results of this study are probably not
indicative of the American population as a whole. The books
were not selected on any scientific basis and had the
following important characteristics which probably skewed
the findings:

e All of the books_belonged +to friends and__neighbors of
the author in California, Thus man addresses, zip
codes, area codes, etc., had common values.

e All of the books were kept for families and not individ-
unals. The effect of this in uncertain but because of
+his entries in these books feoll into four distinct
categoriaes:

o The husband's relatives (characterized by imilar
names, cities, states, zip codes, e*c.).

a The wife's relatives (having the same characteristics
as mentioned above).

o Local friends (characterized by similar cities, state,
zip codes, telephone area codes and exchanges, e%cC.).

o Non-local friends (which had little in coamon, except
perhaps the ailitary in many cases).

e All of the families had at least one member in the arsmed
forces . This seemed to introduce wmany acronyams and
afbifvlatzons vhicha arg robab ot verg cognon in
civilian spheres, This Erobab also accointed for a
larger than usual nusber of "non-local friend entries.”

9

B. METHOD OP ANALYSIS

Each of the books was recorded into a file of its own in
a fashion which changed it as 1little as possible from the
origipal. Non-alphabetic and graphic symbols were repre-
sented by their closest ASCII equivalent, if there was one.
Otherwise an alternate such as "@" wvas chosen. Statistical
analysis was performed on these files but is not included
because it included lover-case letters and a large number of
spaces (used for formatting). It was felt that these condi-
tions made these first sats of files inappropriate for use
with the PDBMS.

After the above files had been created, the files wvere
than copied to another set of files. In transferrcing the
data, all 1lower-case letters wers converted to upper-case
and amultiple spaces were removed. Tables VIII, X, XI, XV,
XVI, and IVII present the results o5f the analysis of these
files.

FPinally this second set of files was copied to a +hird
set using a transformation which was designed to reduce the
skevedress of the letter and digit distributioas. This was
done at a time when it had not yet baen decidad not to use
text compression. Many “ext compression technigues require
knovledge of the distribution of the symbols. It was hoped
that something close to the letter iistribution of standard
English would be obtained. The tables which use %he lapel
"After" reflect the data gained from analyzing this last set
of files. The distribution 9f the letter <£requencies €for
English were gotten from refsrence [14]. #hat follows are
the rules applied to the second set of files to produce the
third set. They are listad in the order in which they were
applied.

¢ Remove all redundant surnames.

95

AD-AR121 894 DESIGN AND IMPLEMENTATION OF A PERSONAL DATABASE
v MANAGEMENT SYSTEM(U) NARYAL POSTGRADUATE SCHOOL MONTEREY
CA P L JONES JUN 82
UNCLASSIFIED F/G 9/2 NL

L .
\
_1
[
S
1 §
o R |
 C—— 2-2
— g m L ‘
40 20
||||| A
= Il.8
]
l‘ml.zs mlA 1.6
E= = I=
z‘
!
MICROCOPY RESOLUTION TEST CHART
NATIONAL nungw OF STANOARDS —1963-A
i
N

o i

YR

S £

Rt AR S NN

e Remove all redundant city names for cities_ in the same
state. ny form of the name is removed (including
abbreviations) leaving the longest form.

e Remove all redundant zip codes.

e Remove all redundant telephone a2xchange numbers within
the same area code.

o Remove all area codes and state names.

® Re-ove the first th:ee digits of each g code
remain o These gets in i,ate the post office's

Ze) h1 1l re 10n t st it d major city or
33 grigutggn pognt (éecond gnd thgrd)dig .s'.j !

The data in the first and second sets of files, though
obviously address book data, could not be used as a repre-
sentative sample of the "average® American address book.
Por example, 310 (6 percant) of the wordds in the address
books refer to the states of California, Maryland, ©North
Carolina, New York, Virginia, and Washington. This would
probably serve as a poor basis for predicting the contents
of the address book of someone living in Chicago. Por this
reason the above transforamation was used in an atteampt to
remove the influence of famnily names and geographical loca-
tions from the data yielding a sample aore representative of
an "average® address book. Because the PDBMS is not
designed to handle only one specific person's inforamation,
an average address book was needed in order to deteramine the
utility of algorithms and data structures. If the address
books had been found to contain almost no redundancies, then
the idea of using a DB dictionary probably would have been
discarded.

96

T ——
PR N

b3

-

A AR AT AL

LY TeT—
)

C. RESULTS OF THE ANALYSIS

In the tables appearing in this appendix, the words
"wordd," "char," and "punctuation"” are used to connote the
definitions ascribed to them in Table I. The word "char-
acter" is used to mean all printing ASCII characters and the
space. All percentages, except those in Table X, reflect
the percentage of all characters.

1. General Statistics

The difference betveen the number of unique wordds
in Tables VIII and IX is a result of the reduction of zip
codes to their last two digits. The differences are equal
to the number of unique zip codes. Also notice that the sua
of the urique wordds in the four books is not egqual to the
nuaber in the total columa. This is because thas total shown
is the number of unique wordds in all four books as a whole.
Lastly, the reduction of the number of characters includes
not only those chars in the deleted wordds, but also the
punctuation following the ends of and between the wordds
deleted during the creation of the third set of files.

2. Sordd Length

Table X indicates that the PDBNS, as it is designed,
is not as efficient with menmory, vhen compared to a systea
vhich simply inserted plain text (i.e., did not use a DB
dictionary, etcC.) . Between the DB dictionary ard <the
logical records, every unique wordd in the PDBMS requires at
least nine bytes (seven for the DB dictionary entry and two
in the logical record). Wordds which are duplicates of
vordds previously entered into the PDBMS require five bytes
(three in the DB dictionary used f£o5r the fiell ID and the
pointer to the physical record, and tvo in the 1logical
record used for the first letter of <the wordd and the

97

A m e e om A h o e

[: TABLE VIII
General Statistics - Before

Book 1 Book 2 Book 3 Book & Total
Records 80 129 88 11 408
rields 340 472 346 350 1508
Characters 6173 8409 5908 6248 26738
Chars 5049 6639 4809 5163 21660
Wordds 1119 1579 1134 1129 4961
Uniaxe 749 958 740 723 3170
Wordds

TABLE IX

General Statistics - After

; Book 1 | Book 2 { Book 3 | Book 4 Total
p Records 80 129 88 11 408

3 Pields 340 | 472 346 350 1508

N Characters 5502 7053 4928 5134 22617

: Chars 4385 5325 3834 069 17613

b Wordds 1008 1329 941 925 4203

g Unigne 722 912 704 678 3016

5 Wordds

E wvordd's ID). Using the numbers in Table X, the average

vordd length in the four books is 4.37 chars. In order to
be better than or equivalent to a systea using plain text in

o
§
: 98
b

................

TABLE X .
Wordd Leangth Distribution

, Wordd P reguenc %
- Length 1 Y
b 1 ;10 6.25
- % ga 1“.67
- 939 18.93
- 4 800 16.13
£ 5 936 18.87
¥ 6 427 8.61
: 7 348 <01
) 8 243 4.90
7 9 116 2.34
. 10 61 1.23
)
11 36 0.73
- 1 16 o3
o 1% 1 8.0%
pon
[}
F
{; records requires highly redundant information. The four
? books together require approximately 34K bytes of storage as

plain text (this includes administrative overhead). Hovever
this does not include the storage required for indices
needed to provide randoa access; only sequential access is
possible with only 34K bytes of storage. Based upon the
data derived froa the four books, the PDBNS woulu require
approxisately 45K bytes to store the same information (27K
bytes for the dictionary and 18K for <the files; again
including adainistrative overhead). However, unlike the 34K
bytes above, this 45K bytes includes storage dedicated to
providing randoa access. \

99

..........

N T R D A e e s

oMo
NNV~ 2O
OOQN\OQ"

[I
QMN\GQ—

MOy
QOO ™™ N
DM =
R

Qv pND

DOOMN®
OO
NV -
[I B BN A J

Lo~ =Ll

Book &

OO
NORM =N
ey

ASUNONCI
O~
- o

VO=~D
~O=n

2MOM™ Qe
NI
M-
[I XK
2ot ady Tal— -]

MOV

FYONONOOE

QO™
¢ 9 0 900 80
—nO e MM

WIMANO ™M
AMOMOMD
C\OONQ"O

"0 0 e
MPOQHNWP

DD~
=DMV
QWNMN
e 9 e e @
OO

Book 3

MNFONO NN
= AW
M e

NG vt~ 3
ONMNMODMN
- —e=eN

W= Nonne
MO NNDWO
~N NN~

QO
osﬁp—

TABLE XI

L]

N0 N
DNIF ™V
VAN NON
e 00 000 0
NI NANRN OO

NNV MNI0O
NV O
oMo
s s 000 0
NNOoNNe

FONNOOD
NN PDDN
LOIOONINN
s 000 000
DeEOUNHIMO

Y
Al At as

Char Statistics - Before

Book 2

PNDNNON
=L OWNND
PN

O INO™N
Fgﬂlﬂlﬂﬂ‘
N

N peiN®
- NODM™
- N

%

IO =NS™
ADNNO M
POV OONO
e 00 0000

NN O

Mgﬁl‘m
M'O\D»
o8 0 0 0

—mOOMmez

2#\00&2@0
=NOWVOS™

9 9 06 0 0 0 0
DD MM

DN
=NM-OWN
= DONON
T 0 0 0 0

~o0r™O

Book 1

[ty - Liotdd o 4
WO
(ol ol nd X 3

VDO DP
QT MANNT™R
NN

FDFOND
N~ - OOMO
N N

00 QAIMY

T2t I 0k o I

OO

L g2t 1)

100

Gk~ s

L2G A A A

RO 4

IR M

TABLE XII
Char Statistics - After

T T T .

e T e e T e LT s T TR YL T N, T, YL,

IONXDVIO™
OO =UNON

N OO
¢ 98 0000

QNN

N DM
O DEMOM

RO
L IR

O™ PN

DONF™NO
MO YPNOD

NINONO VL
EEEEXE

FEOVIFMe™

Book &

NSOV
ONMNOMe=p
- Ny

MHNONOVD DD
MO =On™
o M

NV eE=MPtOMm
NSO
OMN=M
e 0 0 00 00
NYOOMN

DO\ F®
NNOONN™
QO™ OVDON
e 0 00 ¢ 0 ¢
O

~ONem
MR
~OMenN
*® 90 00
——owo

Book 3

NNy
OVWMNPIOO™
-~ -y

QNN

O NI
N e

A= rove
Vneine

SOOI~
>N

O
|Momane

* 00 000
VI ORNOO

=OUNNTINO ™

g NN

AN PO™OO
s0v e s
—NOOMN

VNN=ND
g G Sty
~MoMatnNoy
¢ ¢ 00 0 ¢
Feonmmo

MONOOV™M
MUNO =
DO O™
se 0 00
(=11 ol)

Book 2

NADSO =N
OMeaN®D
-\ Ny

IO
AN OO
mT RN

Mg A
BNt~

NN 2
N~y
O NOOC

909 90008
Lot s [2l o ol

NP DO PN
QO™

-NOOMe

N WO e p
OB =Dt~
- o ™D
s 00 00 00
FTOIFIMMe

Book 1

Meme= (e 9D
MO NOWNN
" emy

ONO O~
QTrMNO®
-l -y

DOMMAINMN
N~ Qe
L

4RO QMM

TN I TR

QO NEHD

t -2 1 1

W S U Wy O TP Y

101

Docindine. S dndnssondions

N

ALt

v YT
DA S Ut

o 4k e

TABLE XIII
Digit Statistics - Before

Book &

OO

MO FND
900 09
NN

Book 3

-0
(-2 - 0o | o
Lad o ol ol o

DOPF™ P
MOMO
— e

OOVN™YO
¢ s 00
MmN -

MO 2»
o ¢ 0 00
- \ve e

Book 2

NN=OM™~
N ™
NN (N -

DINDPO
0

- e

NOMN®
s o000

M-

N2 ~00
eo 0o

P ED e

Book 1

MNP
[ing L alad
N =

DN e=D

-

N

IOor~o,

e Talaalad ~
o0 008
NN

FMminNe
o 0 0 0
- e g

=0
=AW
U Tallalie og]

MIPNON
I QNN
MMM

ZFONMTN
s 00 00
-Oer e

MeROW
o of~ 0o

— v o

Bdok 4

MOt~
AERE
NN

OVNOM

900 200
(ol od od o4

Book 3

FODNN
=NMOOH
e

QNN
- I 8T

TABLE XIV

[l Ve Ty b 4
(UK
NN

Y- Ta V-1V 1 J
e v 0 00
e g

Digit Statistics - After

Book 2

- T e gnEs

MDY -
-
L od el o

UNO ™ s~
[2 BN BN BN
NN ew e

M2y
e 0 0 0 0
e

Book 1

DI P
el dad il
-

PODUWN
eSO~

102

o=N"

IO~ DO

o

Chat s 33

Ol R 2P et

LA L o 2
s e es e

™

gl Al AN Sl At faa b {

MM OO [PEOOVMy VO™
w = { NOMN | NOMN. ¢ ¢ ¢ |[OOO0M
o oo of so v | o000
-l PO | mNODNO | O
o OM et I e | =N (-}
» " - ™
Q -
-
LMOOUND | DO»MNOD | MOONN
" e g OO0 O 00 NN |O ¢ OO
[- -] e o o DO o e
L 4 .
> VOOOM2 | OO0 V0 | NOO™™
8 -4 e
(-]
(-]
] NOOQO=NN | HFOOMOO | NOOIND
[17 | P> g g T 3 900 0 9 |D ¢ ON
-l WO o o VO™ N OO v o
&
]
-l
&» ~
» o OVOMAe | »OOWY™* | mOOMM™
" & ot N 0 |l ~0NY -
] -] ™~ -
" [~
ol]
-
o -
o &
o ME=ONNN | NNOOUVW | ~O00™
o9 e O N IO 2 0 e s l™ ¢ ¢ @
g © o e s QNN)
(] ~
™~ 2P | 2NOV SO | NOOOD
8 [®|w QY
8 [~] e N
-
(-]
NMINTNO | VO N [O =
" ONOMO | o o°o'.o (] Ogg 02
L [) OO w 10 D
-
RN | NOOSNO™M | ~NOY
g N™ 9 e O™
g | -
S C
GRNde | o ¢ o) o | Nsecuns
-1 »
L] (-]
103

T YT, Y I Y T T

3. chagr. Digit, and Bunctuation

Tables XI, XII, XIII, XIV, XV, and XVI present data
on the syabols found in the four address books. Notice from
Table XVI that it is obvious that <these books are nHt
sanples from noraal English text. For the most part, the
books are "fairly unifora® in their use of letters and
digits; this is not the case with punctuation. Book 1 is
distinctive in that it is the only one where a dollar sign,
colons, and semicolons appear. Book 2 uses an unusually
large nuaber of "other"™ punctuation characters. These punc-
tuation characters are those vhich wvere used to represent
graphic, non-alphabetic symbols. Book 4 is unlike the
others in that it uses the plus sign as the abbreviation for
the word ™Mand" vhereas the other books use the ampersand.
Book 4 also contains a relatively small number of paren-
theses, dashes, periods, and "others" coampared to the other
books.

4. JInitial Letters

Tables XVII and XVIXII shovw the distribution of all
alphabetic wordds in the four books as a vhole by their
first letter. What is shown in th2 "Most Prequent Wordds"
coluan are those wordds vhich account for approximately 30
percent of the total nuaber of wordds starting with the
letter in the corresponding first coluan. Notice that
surnames, cities, and states do not appear in Table XVIII
because all but one occurrence of them remains in the third
set of files. One noticeable excsption is the towns of
Westainster. The vordd appears in Table XVIII because three
different tovns occur in <the four different books
(Vestainster, California; Westainster, Colorado; and
Westainster, Maryland). As proof 5f <the skeved nature of
information notice the large nuaber of occurrences of the

104

TABLE IVI
Comparison vwith Standard Bnglish

-]
o QD OON OOV A 2MDO | OV-OM | SNINIOW
+ oM~V {NM O =0 | MINWIN SN TN
(3] [B I s e 0 e [I) [I R] e e e e 00
[J MO | DN [ONOIV™M | 0OCNND | NS =~
=7 ™NOM:e | ONON™ [=OM |V NOO jOoMiNT™yY
o) N eep o Lagt ada (o] NN

13 ~

o

» S

L2}

L] -]
® VIOVNO | NNININO FNININOO | MINO OO |oonNoN
> NN OO JAINNOO | ANIOOO jOINMNNSN
[] o0 0 e e s o0 o0 00 0 [K [B B I I N
[N ey |OMOXM | OO0 | MO0 | -MOVNNOOOON
n MOVMMIG | V=M N0t |~ VOO OO
n ~M - — NN NN
o

\

-]
[] ONSON N2 [v | OISO
» ~NOMY VNON™ [=MNOZ™ | VONO™ JOMN™YD
4] S e 0 e (N 900 00 ¢ e 0 0 o0 00 0
[4 NO™ ez | QONNO O | QOONNM | ~O00O00
[« 7] CNNOCHON | DOFON [NFPNON | O™O2O [N OND™

° k ™M e o Lad od o (1] NN |~

-

O

-

[4 o

m @® ANINND | OCOOOU FINOUNRNY | OCONIIN [NONOWNO
» OFANFO | NUNIERNNS FNOSNN [NOo-ar [~ocuntin
[¥] e s 0o e s 0 00 e o0 000 [N I I) s e 0000

o~ = | 0OMOM [O™ D | O™y ~OmMM e
“ .lowwz ONN™ | OMPOVD O MM N
.nnw ey -0\ NN Lala [o]
AMOUORT | ROXN=™) [M-IEIEBO | A OMIUIE | DB MM

466.89

X2 Statistic Before:

387.44

X2 Statistic After:

North

»
-
|3
L4
o
-rd
[=]
]
O
w“l
ot
-
[
(8]
«
o
0
[
Yy
L]
)
0
@
£
Y}
-
O
“
[]
[
o
ot
»
o
4
>
®
7]
E-]
£
o

(¥d) . The
accounted for by the

and Washington

fork (¥Y),

Carolina (NC),

large number of P's and 0's can be

large number of occurrences of the auword "P.0O." as an abbre-

viation for post gffice.

105

P S WL S

b IR it st ey g
[AL

e 4

LA SEI 2iar o

- et Tel te. °

These two tables also support the preamise that these
address books are not from normal English text. The Bnglish
words "THE," "OP,"™ and "AND" make up 13.75 percent of all
voris in English text. These same words amake up less than
one percent of the wordds in the address books. In fact,
less than one percent of the wordds in the four address
books are the 46 most frequently occurring words in <%he
English language. These 46 words account for more than 41
percent of all words in English text [15].

106

TAY W .mI W W TwoTYF OTWw

P
) (=] SO [DIF™ | NOFO OIS VO NN JONI™M | MM [IONM | AN Nty | OO
. = v W O | (N L o o L ad ok [o od
, Fﬂw
3 [
w.. H
. O
. “ +
,.] [+]
g m o
) an]
/ L] o9 -3
[l ~ = -3
n HE " -~ |- -4
o ® O 2] o - A0 [>
o s 2 =] =] (=] (2] 8 MR | oMLl A7 - 0
o) + = = B P = = (O | Mol = Lol 80 =
- O (7] PIRIE4 | D41 Lo Rl - 10O 4 OMOM I mEmme) O n =\ ixs mnEND
_ b = Q B jlOHR | O | aifd «tgag 1o 30 g [O™ | Im O H etk | OO
: » E +] e |OMOM |OVVO | AOOAER | AR | P [OOOG | mmim |-t | " | M | 303010303
L ~
| m o o
H =3 A
: m
3 - N wm
B [I] - O - - o o -] (=] @ ™ 0 [+] ™M (72}
£ + o o o~ (-2} 4 ~ @ o ™~ o ™M o ° [ag]
g L o ot o (o] (44 - L - -
o [] 000
o - Hax
B
- ~i
v.. o
» wd wown
- + o09dY |~ = o - N |o o) m - = 0 o~
n o oo ~ o~ o~ ~ 2 E 4 [T [o~ T3] ”™ ~
d n oot b4 - -
0F0
3 ==
.
X
B - m v a m e © L -] ™ e
14
3
.
v.‘
'
:
:
;
.-.
’ .
PRI . o PN I IR WD TE DRSS ..ot - d Lo i) KOdL el NeX

T w3 T W — W
ST

v T T

A a—a e a4 .. -

o
&)
b, (-] OIRNRILIN | =rOr~-M |0 [~O0n OWN i~ O M OO | ™M N
. - MO~ | IO e [e e N ne
. o
3 O
h +
. =]
V.]
. on
(o0 e (-}
[L] (=] od [(]
(21T - [o] (0] [] -
O [] B w3 | N bt
= -} x 0 =M | (0] n- .
o » nK &4 4y (=] 40 | e -3 i) L] i
| a s)] w el L L [[3]=] L] Belag | WO |8 -0 LRk ‘4
» 0 [maQadO | U RO - ol QEHO [«EME JORMOM = | Wt | = oL M
M 9 = nELNEE |mEEmEe OO0 |t o | NNNNY HEHEEK D [| e e I 4
-3 1
| m o]
. a3 4 - |
- O - ;
[T &) - O™ o o~ O wn ™ {0 o o~ - e~ wn ofjo jo i
o8 ® m o ~ o = ~ o . N
.m o by o~ o~ - - o ™ - {
00 1
: HER i
3
|
f “woun
ﬁ Opo |on 0 m o mls ™ 90 ™M= ~ Joln]|e~
v oo o W ™M ™~ () ~m L) - i wn
\ ol e -
. oa0
" =
,
v«
n = (o] "] [« 2N] 7] 2] D ™= eI

L M

hAEL ESE

[
»

.
r

1
’
*
r
s
'
3

v

W

»
7 s ~OM O | OO0 OVt O fiNSM [IM | 23IM UM | NN [ONMIM OO Y
L o e O™ - N - Lol od o | ol o
. [
... (¥}
. u
1 @
» »
518
-4
| o -]
o [.1 o
h 0 -84 L) =t =
o O [m It | & -4
. Lo = =} [34) (=] L] MO IO l oLl = EIE] -y
. - w + w -3 o~ = M [i SE0f § otde | I = MEX | 0D
! H O (] BIRIE | MM o - b 0 oM O | BmMdey (9] m Wt | =
& - = O =y OO OO [xicd «deg] df] | B § RO-D) | 302 O M jdmdg | dHEs o
. g a waded |am | DOUVLUL |0aaA | Mn Baffee | O | tmimtee | 4414 | M | MEMEME § +30d00303 o
3 % 3
< I -
" m W “-n
- o -~ O ™M) = | g w® -4 (-] ~ O ~ (2] ™
b, - P o o -4 ~m o ~ ™~ O o ™M (g] (2] -
3 » “O.” o o~ (3] - - -
3 3 B
'.. 1
o
y ol -won 1
. » o g - =2 [- N [- -] o m - 4 o4 N
b | wd o ~ o~ o~ ™~ = L 4 [Te} ~ o~ w [ae ™~
- n i b4 - -
og0
3 =D
' L 0 18 (=] () o (4] x - b] L (=]

r..
-
3
F .
£
b . o
: a D2~~~ OMMN | =0 0 QWM SO0 I | M N [Mom ~N
' - Mmoo [ol od o | e | N -
. o
y .
'.. t
. a
. o ;]
- S0 2]
F. [i L] 7]
. M "
: B O [| o bt
. = m A " | w3 =
’ - 4§ ol &4 -302 a (o] 2] >3 | A4 E4E4¢ -
9 - o] 0 (1 (]]] (=T -< R feEm O] wnun =
N - 9 O o1 g omo - -t A0 |64 HED Om = | € B =4
”, > 3 = mEuunnm | ammi | OO0 | At sddel f NNV JHEK D [> | =ik o3
4 “ 5 =]
. M ¢ -
b [I -
3 m O Lok]
s - O ~od |un o e (o o~ ~ |ofjo |jo ololo
p] o o =2 o o [Tg] o o n Lol ¥ 4 [-,) -
% P ok o~ - - - - -
Vs 000
y =t
v~
.
1 -on
a o N O ™ @ ™Ml m O ™mim o~ olnir~
o o (7] ™ ~ [] m™m ~™ -je- n
.\ a6 |” v
4 0g0
s b 3—1.]
A -] " o (-] (o NN -] 1] & -k . J M I
;
i
4
4
s
W o T - HP/TRATSSE T RLTTT G AP TSI LS N WL DN JAC DAL JU DR DAL S S P ST U WL . A S O S P

—

LR P S S R T T
PR SN « .

- LIST OP REPERENCES
'}
? b sgaipaes, ol o 38 .
e 26 The PORTH Standards Tean =7 FPORTH Interest
- Group, October 1980. « BORIEZZ2.

3. Nandler, Goor "The Reccgnition of Previous
%gg?unte:s, g;ig;n Scientist, Vol. 69, March-april

,."rl"'i w0
. TR IO

4. g:bl: gav%d t"zdigg:s“‘gg Georgo. "Beha;iog:l
e ° e
Vol. %3. go. 1, Harch g’g S4ryYers

Se neckol. Paul and Schroeppol, Richard. nSoftvare tech-

Slvtl S NNt

! an £unct ons and ta into_ pocket-sized uC
agg& cations," Vol. 8, April 12,
, 6. Williams, Gregg and Neyers, Rick. “The Panasonic and

2:::§’8%8d;ﬂ0 4 Computers," BIIE, Vol. 6, ©No. 1,

SR #~ Mk At

7. Morgan Chris. "\ Revolution in Your Pocket,"
Volo 7 Moo ds april 1982- " BIIE.

: 8. Hirsch, B. S, "Procedures of the Human Pactors Center
! at San Jose,"” LB Svstems umu. Vol. 20, No. 2,

9. Stuart, LaParr. "LaPQRTH," SEgggggéngi of the 1980
PORMSL éonforence. PORTH Intere

% 10. g%gggrdi o David K. 'c:ygtggraphicutgggézgatiofor
ssg!nnzgggf ons of the Sln, vols 25, ‘No Ui, 51

Cmied e A

it 4

1. Bell, D.

i—’ﬁi“u!‘ﬂm‘g%ﬂpmﬁiﬁ%m.”s”'iﬁng%w‘%

P TR T B e g D

Avabi it S PRrt-SReast-

m

Loy vy pre

.......................................
.......................................
........

IAPAPRPLYLS HR SIS 00 sgt Sostan S UDVEMELRL IO,

P e i a/C AN AR (DI g4

il I L B G et
'

13.

4.

1S.

b S PR e Aai Ja

3 . "An Architectural Trail to
Th:ea&ed-Co e Systels," compyter, Vol. 15, No. 3,
March, 1982.

§§hn, David. The Codebreakerg, The MacHillan Company,

Montgomery, Edward B. "Bringing uannal Input into the
20th Canturg Neu Keyboard Concepts," Compyter, Vol.
15, No. arch 1982.

112

RS S AGRLA-AREN A aR s, §

i

BIBLIOGRAPHY

Brodie, Leo. Starting PORIH, Prentice-Hall, Inc., 1981.
Cassad John. s.:%giig 4995?3!911 souyrce Listing, FPORTH

Intcrcs Group,

Derick Mitch and Baker Linda.
Nountaln Viev Press, Inc.,’ 1982. EORIH Engcyclopedia,

:sg%ra Prom A to Z," Digital Desigpn, Vol. 12, ¥o. 1, January

gg:le g%.§1.1,‘93%&%&98§%pn§%rs §g§%§o:§§§§§9§§§?? Desigp,

aydon Glen B. "Blelents of a PORTH Data Baso Design,"”
zg{xn pIMENsIONS., Vol. III, No. 2, July/August 1981.

neckol Paul. "“Designing Translator Softvare,"” Datapati
Vol. 28 No. 2, rebrngry,g1980. ’ 28.

=man, David . "A HNethod for Construction of

|
- "
g%gi:: ‘g?d¥gg3ncr Codes, ® pProceeiicg of the I.R.E.,

Janes John S. "PORTH for Microcomputers
%3, No. 10, October 1978. P »" SIGRLAN Notices,

xilbrid Dave. "“Porgiving Forget,”™ Vol.
I, Fo. 8. ua:chllpriig 3817 get," EORTH DINRNSIONS, Vo

Laxo Henry. "Techniques Journal: BExe Vectors
pInERSzoNs, v 1 z " LAl

utio
ol. III, No. 6, Marchs/april 19

on
81.

§:I iatogigg:rd353s. :n%rgg :gg :ogiﬁiiéiib"is’§?§}°§ln§3§
n Users! Knougg ?o, gg..nn;g;;ign; of th 3 1. 4,

No. ¢ AUgust
adue . ext ressio Techniques
2329;i;;2;5; (Sont Africa . i %1, No. 17 $5e 9393?‘*9"‘

g gsdale. Williaa. bié?;‘gasg Installation Mapual, FORTH

erest Group, Novea

Rather Blizahcth D. and uoo 'ﬁl E!gflcs He “The Eoggg

lpproach t0 Operatin ystols, I Proceeding o
37

Annual Conference, 1

113

.................
................

..............

T e T e T et T AR T e L T, L T WL W L TN LY. LT T

."‘ nl_ ‘_ 2 ‘.. T, . . f

g r‘ DA

8
r

O
2
L e

Raghbati, Hassan K. "An Overview of Data Canression
Techn ques," coppuyter, Vol. 14, No. 4, april, 1981,

Reisner, Phyllis. "Husan Pactors Studies of Database Quer¥
Langnaﬂes Survey and A ssessaent," uting
the "AC Vol. 13, No. 1, March 1981,

Ssit Robert L. «-79 v i
1.)h'UOugtgln View P¥Q§§§‘1981§&13g3;g Conversion (Version

Rty CREIe " pun 10008, 2RBRT4SE, 209, 5he Rriscinle of least

4 FOBML Proceedings, Vol. I-II, PORTH Interest Group,

116

e PTTTUTwT Y d -
. LI R .“—"a' S e

T
S

) A

AN L

Ty -

iy s B e gl SIS ar

1.

2.

3.

4.

S.

6.

7.

9.

0.

.........

..................................

INITIAL DISTRIBUTION LIST

No. Copies

Deﬁ:ggo Tochgical Information Center 2
exanaria. v rginia 22314

Defense Logistic Studies Information Exchange 1
J.S. Ara ics aana?oncnt center
Port Loe, Virqinza

T AT IAL R :

Monterey, 8 igg%rnia 93940

Dcpa:tlont Chairsan, Code 52 2
epartaent of COI %o: Science

uont.:£$f‘8’i2 o:nia 3°3u0

Ca tain Peter L. Jones 4
aa: e Corps Cent ai ncaiqn and

f° rasaslng lc
Har CO:B! I S and Bducation Conland
Quantico, rgin

Associate Professor Dushan Z. Badal, Code 522D 3
Dopartnont of Con nto: s;ionco
3940

gg;torgg’tgtigggrnia

Ptofossor Gordon H. Bradley, Cods 5282 1
:ft-ont of Cos uto: s ence

Nav T

fdonterey, 3 ﬁ&‘nu

Liontonnnt Comnmander D. Shoop 1
Departgent o Computer ence

15
git %u:q ol ngnsy ;:g a 15213

Captain nocdjiono 1

4
pﬂi%s% Subroto 101
Jaiarta-rulat, Indonesia

Licutona t Ricardo Arana C. 1
ntral rocesgaaiento de Datds
gi.‘ t.: e Narina

118

..............
...............

1. Lientonant Bichard T. Holdcroft 1
ggrg:eggrgeg‘ og et hool
lcvport. Rhode 8 Ogg

v

g 12. Lieutcnan+ Colonel Paul A. Pritsche (Retired) 1
% g Cottonuood Lane

4 Pittsford, New York 14354

& 13. Lientonant Bduardo Bresani 1

gn}g 2‘ rocesamniento de Datos
ter Marina
Lisa -~ Peru

P M

R

116

